Abstract:
A method and apparatus for tracking amplitude and phase of a received low frequency signal comprising a walking pilot signal is disclosed, wherein the pilot signal changes in frequency a number of times according to a sequence that repeats. The design includes initializing a FIFO buffer and summing estimated channel power over the sequence to determine an initial total power. The design also includes, for a new received symbol, determining an updated power estimate for the new received symbol, placing the updated power estimate in the FIFO buffer, and removing a least current value from the FIFO buffer, and estimating amplitude of the signal using a sum of all updated power estimates in the FIFO buffer divided by the initial total power. The design may further include determining a delta phase value using maximum ratio combining scaled with a scaling factor.
Abstract:
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for a link adaptation protocol in a wireless local area network (WLAN). In one aspect, the link adaptation protocol may be used to select a transmission rate option (such as a modulation and coding scheme (MCS)) for communications from a first WLAN device to a second WLAN device based on wireless channel conditions. This disclosure includes several example message sequences for the link adaptation protocol which can accommodate a variety of uplink or downlink data transmission designs, including single user (SU) and multi-user (MU) transmissions. The example message sequences may be used with orthogonal frequency division multiple access (OFDMA), multiple-input-multiple-output (MIMO), and beamformed transmissions.
Abstract:
This disclosure provides methods, devices and systems for data parsing for resource unit (RU) aggregation. A wireless communication device (such as an access point (AP) or a station (STA)) may allocate a set of RUs for a receiving device in a basic service set (BSS). The set of RUs may be associated with multiple bandwidth segments of a bandwidth allocation and may be non-contiguous or contiguous. The wireless communication device may determine a data parsing and encoding scheme for a set of information bits. The data parsing may be implemented at a medium access control (MAC) layer or physical (PHY) layer and the encoding may correspond to a joint encoding or a separate encoding for each RU of the allocation. The wireless communication device may then distribute the coded bits to the set of RUs for transmission.
Abstract:
This disclosure provides methods, devices and systems for increasing carrier frequencies for wireless communications in wireless local area networks. Some implementations more specifically relate to beamforming training operations that support wireless communications on carrier frequencies above 7 GHz. In some aspects, a beamforming initiator may initiate a beamforming training operation by transmitting a number (N) of beamforming training (BFT) packets in N TX beam directions, respectively, on a carrier frequency above 7 GHz. The beamforming responder receives one or more of the BFT packets and provides feedback to the beamforming initiator indicating the TX beam direction associated with the BFT packet having the highest received signal power. In some aspects, the beamforming responder may train its RX antennas for RX beamforming concurrently while the beamforming initiator trains its TX antennas. In some other aspects, the beamforming responder may train its RX antennas after the beamforming initiator trains its TX antennas.
Abstract:
This disclosure provides methods, devices and systems for increasing the transmit power of wireless communication devices operating on power spectral density (PSD)-limited wireless channels. Some implementations more specifically relate to pilot tone designs that support distributed transmission. A transmitting device may modulate a physical layer convergence protocol (PLCP) protocol data unit (PPDU) on a number (M) of tones representing a logical RU associated with the legacy tone plan and may further map the M tones to M noncontiguous subcarrier indices associated with a wireless channel. The transmitting device may transmit the PPDU, over the wireless channel, with a number (N) of pilot tones each having a respective location relative to the M tones as mapped to the M noncontiguous subcarrier indices. In some implementations, the relative locations of the N pilot tones may be different than relative locations of a number (K) of pilot tones associated with the logical RU.
Abstract:
This disclosure provides systems, methods, and apparatuses for wireless communication that can be used to reduce the peak-to-average power ratio (PAPR) of data transmissions by increasing the degree of randomness with which data is scrambled for transmission over a wireless medium. In some implementations, a transmitting device may determine a scrambler seed value that includes at least 11 bits, where at least one of the 7 least significant bits (LSBs) of the scrambler seed value has a non-zero value. The transmitting device may generate a scrambling sequence based on the scrambler seed value and a polynomial, may construct a physical layer convergence protocol (PLCP) protocol data unit (PPDU) that includes a multi-user (MU) request-to-send (RTS) frame and the scrambler seed value, may scramble one or more portions of the PPDU based on the scrambling sequence; and may transmit the PPDU over a wireless medium.
Abstract:
This disclosure provides methods, devices and systems for wireless communication, and particularly, methods, devices and systems for including signaling regarding enhanced features of new wireless communication protocols. The signaling may be included in various portions of a physical layer preamble of a wireless transmission. In some implementations, the physical layer preamble may be used to indicate puncturing of subbands or content channels that may carry further signaling in accordance with preamble signaling designs of this disclosure. The physical layer preamble signaling be parallelized for different subchannels of a wireless channel that consists of multiple subchannels. Some implementations of the physical layer preambles may be used to multiplex different types of wireless local area network communications into different subsets of the plurality of subchannels of the wireless channel.
Abstract:
This disclosure provides methods, devices and systems for increasing the transmit power of wireless communication devices operating on power spectral density (PSD)-limited wireless channels. Some implementations more specifically relate to LTF designs that support distributed transmissions. In some aspects, a transmitting device may obtain a sequence of values representing an LTF of a PPDU and may map the sequence of values to a number (N) of noncontiguous subcarrier indices of a plurality of subcarrier indices spanning a wireless channel according to a distributed tone plan. In some implementations, the transmitting device may modulate the sequence of values on N tones, representing a logical RU, and map the N tones to the N noncontiguous subcarrier indices, respectively. In some other implementations, the sequence of values may be obtained based on relative locations of the N noncontiguous subcarrier indices in the wireless channel.
Abstract:
This disclosure provides wireless communication methods, components, devices and systems for applying spectral masks and spectral flatness parameters in conjunction with transmission of millimeter wave (mmWave) signals in wireless communication networks. In some examples, in conjunction with transmission of an mmWave signal, a wireless communication device can apply a derivative spectral mask featuring transitional offset ranges that correspond to transitional frequency offset ranges of a spectral mask for a nominal carrier signal, scaled according to a ratio between a bandwidth of the mmWave signal and a bandwidth of the nominal carrier signal. In some examples, the derivative spectral mask can feature an in-band frequency offset range that is wider than a scaled width of an in-band frequency offset range of the spectral mask for the nominal carrier signal.
Abstract:
This disclosure provides systems, devices, apparatus, and methods, including computer programs encoded on storage media, for techniques for reducing feedback information in an extremely high throughput (EHT) wireless local area network (WLAN). A receiving device (beamformee), such as a station (STA), may receive a sounding signal from a transmitting device (beamformer), such as an access point (AP), and transmit channel feedback. The receiving device may transmit the channel feedback as part of a reduced compressed beamforming feedback (CBF) operation that includes determining a first set of channel characteristics. The receiving device may select a subset of the first set of channel characteristics and determine a set of differential characteristics based on the subset. The transmitting device may then transmit the sets of characteristics as reduced CBF to the transmitting device. The transmitting device may determine a channel estimation for beamformed signaling based on the reduced CBF.