Abstract:
A method and apparatus for performing semi-persistent scheduling (SPS) deactivation in a wireless mobile communication system are disclosed. A base station (BS) transmits a downlink control channel to a user equipment (UE), and deactivates the SPS when a binary field indicating resource allocation information contained in the downlink control channel is entirely filled with ‘1’.
Abstract:
A method for performing uplink transmission in a time domain transmission unit includes receiving, from a base station, hopping-mode information indicating whether a frequency hopping is an inter-slot hopping or an inter-subframe hopping and performing the uplink transmission using a resource block in the time domain transmission unit.
Abstract:
A method for allocating resources in a wireless communication system is provided. A base station receives a maximum transmission power from a first wireless device. The base station allocates a resource to the first wireless device based on a ratio of the maximum transmission power to a maximum available resource.
Abstract:
The present invention relates to receiving control information in an orthogonal frequency division multiplexing (OFDM) system of a mobile communication system. The present invention includes receiving information related to a number of OFDM symbols in a subframe for receiving first control information, receiving information related to a number of OFDM symbols in the subframe for receiving second control information, decoding the first control information according to the received information related to the number of OFDM symbols in the subframe for receiving the first control information, and decoding the second control information according to the received information related to the number of OFDM symbols in the subframe for receiving the second control information, wherein the number of OFDM symbols for receiving the first control information is less than or equal to the number of OFDM symbols for receiving the second control information.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
The present invention provides for transmitting a spread signal in a mobile communication system. The present invention includes spreading a signal using a plurality of spreading codes, wherein the plurality of spreading codes have a spreading factor, multiplexing the spread signal by code division multiplexing, transmitting the multiplexed signal via a plurality of neighboring frequency resources of one OFDM symbol of a first antenna set, and transmitting the same multiplexed signal via a plurality of neighboring frequency resources of one OFDM symbol of a second antenna set.
Abstract:
An apparatus and method for transmitting channel state information in a wireless communication system are disclosed. The UE apparatus for transmitting channel state information includes a channel state measurement module for measuring a channel state based on a level of interference received from a neighbor cell, a channel state information generation module for generating channel state information for a plurality of resource regions or for periodic and aperiodic channel state information reporting modes using the measured channel state and offsets received from a serving BS, the offsets being set for the plurality of resource regions or the periodic and aperiodic channel state information reporting modes, and a transmission module for transmitting the generated channel state information to the serving BS.
Abstract:
The present disclosure relates to a method in which a base station transmits signals to a relay node in a multiuser multi-antenna (MIMO) wireless communication system. More particularly, the method includes: allocating one or more antenna ports to one or more relay nodes, respectively; mapping each of a plurality of downlink grant signals for the one or more relay nodes to a preset resource domain from among resource domains corresponding to one of the allocated antenna ports; mapping uplink grant signals or data signals for the one or more relay nodes to the resource domains corresponding to the allocated antenna ports; and transmitting the mapped signals to the one or more relay nodes.
Abstract:
A method for performing uplink transmission in a time domain transmission unit includes receiving, from a base station, hopping-mode information indicating whether a frequency hopping is an inter-slot hopping or an inter-subframe hopping and performing the uplink transmission using a resource block in the time domain transmission unit.
Abstract:
A wireless communication system is disclosed. A method for performing a radio access in the wireless communication system includes dividing an available frequency band into a plurality of subbands, generating a plurality of frequency domain sequences from a plurality of data symbol sequences by independently performing a Fourier transform process in each of the subbands, independently mapping each of the frequency domain sequences to a corresponding subband, generating one or more transmission symbols by performing an inverse Fourier transform process on the plurality of frequency domain sequences mapped to the available frequency band, and transmitting the one or more transmission symbols to a receiver.