Abstract:
In one embodiment, a triggered reboot of a field area router (FAR) of a computer network is initiated, and gathered states of the FAR are saved. The nodes in the computer network are informed of the triggered reboot, and then feedback may be collected from the nodes in response to the triggered reboot. As such, it can be determined whether to complete the triggered reboot based on the feedback, and the FAR is rebooted in response to determining to complete the triggered reboot. In another embodiment, a node receives information about the initiated triggered reboot of the FAR, and determines whether it has critical traffic. If not, the node buffers non-critical traffic and indicates positive feedback in response to the triggered reboot, but if so, then the node continues to process the critical traffic and indicates negative feedback in response to the triggered reboot.
Abstract:
In one embodiment, a capable node in a low power and lossy network (LLN) may monitor the authentication time for one or more nodes in the LLN. The capable node may dynamically correlate the authentication time with the location of the one or more nodes in the LLN in order to identify one or more authentication-delayed nodes. The node may then select, based on the location of the one or more authentication-delayed nodes, one or more key-delegation nodes to receive one or more network keys so that the key-delegation nodes may perform localized authentication of one or more of the authentication-delayed nodes. The capable node may then distribute the one or more network keys to the one or more key-delegation nodes.
Abstract:
In one embodiment, periodic round-trip probes are executed in a network, whereby a packet is transmitted along a particular communication path from a source to a destination and back to the source. Statistical information relating to the round-trip probes is gathered, and a transmission delay of the round-trip probes is calculated based on the gathered statistical information. Also, an end-to-end transmission delay along an arbitrary communication path in the network is estimated based on the calculated transmission delay of the round-trip probes.
Abstract:
In one embodiment, a message is received at a node in a network indicating that the node is classified as a critical node, and requesting the node to proactively time-stamp data packets. Data packets are received from one or more child nodes of the node, and the node selects a data packet of the received data packets to time-stamp. Then, the node proactively inserts a time-stamp in the selected data packet. The time-stamped data packet is sent toward a central management node.
Abstract:
In one embodiment, a routing topology of a network including nodes interconnected by communication links is determined, and activity in the network is monitored to determine a normal behavior of the communication links. Weak communication links in the network that deviate from the determined normal behavior are detected, and it is then determined whether the weak communication links are spatially correlated based on the determined topology of the network. In response to the weak communication links being spatially correlated, a region of the network affected by the weak communication links is identified as a dark zone that is to be avoided when routing data packets in the network.
Abstract:
In one embodiment, a particular node in a shared-media communication network determines a resource level and in response to determining a trigger condition (e.g., that the resource level is below a threshold), the particular node enters a selective forwarding mode. In the selective forwarding mode, the particular node does not forward non-critical messages. The particular node also notifies one or more neighboring nodes in the shared-media communication network of the entered selective forwarding mode. In another embodiment, a node may receive from a neighboring node, an indication of having entered a selective forwarding mode, and in response the node may forward only critical messages to the neighboring node.
Abstract:
In one embodiment, a first device in a network identifies an anomalous traffic flow in the network. The first device reports the anomalous traffic flow to a supervisory device in the network. The first device determines a quarantine policy for the anomalous traffic flow. The first device determines an action policy for the anomalous traffic flow. The first device applies the quarantine and action policies to one or more packets of the anomalous traffic flow.
Abstract:
In one embodiment, a time period is identified in which probe packets are to be sent along a path in a network based on predicted user traffic along the path. The probe packets are then sent during the identified time period along the path. Conditions of the network path are monitored during the time period. The rate at which the packets are sent during the time period is dynamically adjusted based on the monitored conditions. Results of the monitored conditions are collected, to determine an available bandwidth limit along the path.
Abstract:
In one embodiment, information relating to network metrics in a computer network is collected. A packet delay for a packet to be transmitted along a particular communication path is predicted based on the network metrics. Then, an optimal packet size for optimizing a transmission experience of the packet to be transmitted along the particular communication path is calculated based on the predicted packet delay. Also, a size of the packet to be transmitted along the particular communication path is dynamically adjusted based on the calculated optimal packet size.
Abstract:
In one embodiment, a packet to be transmitted along a communication path in a network from a source to a destination is determined, the communication path having one or more hops between the source and the destination. An instruction is sent to one or more tracking nodes along the communication path to track a number of local retransmissions required to successfully transmit the packet from each tracking node to a respective next-hop destination. Then, reports indicating the number of local retransmissions are received from the one or more tracking nodes.