Frequent markup techniques for use in native advertisement placement
    131.
    发明授权
    Frequent markup techniques for use in native advertisement placement 有权
    用于本地广告刊登的频繁标记技术

    公开(公告)号:US09361635B2

    公开(公告)日:2016-06-07

    申请号:US14252552

    申请日:2014-04-14

    Applicant: Yahoo! Inc.

    Abstract: Techniques are provided that include obtaining a Document Object Model of an HTML document, such as a web page of a publisher. Elements of the Document Object Model may be identified that are associated with native advertisement placement candidate containers. Based at least in part on analysis associated with the Document Object Model, and utilizing at least some of the identified elements, one or more native advertisement placement candidate containers may be determined. Some techniques may utilize, in the analysis, construction and utilization of a suffix tree of a string of tags comprising all tags in the Document Object Model. Some techniques may utilize, in the analysis, a node flattening technique in connection with the Document Object Model.

    Abstract translation: 提供了包括获得HTML文档的文档对象模型(例如发布者的网页)的技术。 可以识别文档对象模型的元素,其与本地广告布局候选容器相关联。 至少部分地基于与文档对象模型相关联的分析,并且利用至少一些所识别的元素,可以确定一个或多个本机广告布置候选容器。 在分析中,一些技术可以在文档对象模型中使用包含所有标签的一串标签的后缀树的构造和利用。 在分析中,一些技术可以利用与文档对象模型相关的节点平坦化技术。

    Almost online large scale collaborative filtering based recommendation system
    132.
    发明授权
    Almost online large scale collaborative filtering based recommendation system 有权
    几乎在线大型协同过滤推荐系统

    公开(公告)号:US09348924B2

    公开(公告)日:2016-05-24

    申请号:US14123321

    申请日:2013-03-15

    Applicant: Yahoo! Inc.

    CPC classification number: G06F17/30867 G06Q30/0269

    Abstract: A method for adjusting one or more parameters associated with a model. The method comprises obtaining, from a first source, first information related to activity of a user. The method further comprises adjusting one or more parameters associated with a model based on the first information collected within a first length of time, and obtaining, from a second source, second information related to activity of the user. The method further comprises adjusting the one or more parameters associated with the model based on the second information collected within a second length of time and a measure indicative of performance of the model, wherein the second length of time is larger than the first length of time.

    Abstract translation: 一种用于调整与模型相关联的一个或多个参数的方法。 该方法包括从第一来源获得与用户的活动相关的第一信息。 该方法还包括基于在第一时间长度内收集的第一信息调整与模型相关联的一个或多个参数,以及从第二来源获得与用户活动相关的第二信息。 该方法还包括基于在第二时间长度内收集的第二信息和指示模型性能的量度来调整与模型相关联的一个或多个参数,其中第二时间长度大于第一时间长度 。

    Real-time asynchronous event aggregation systems
    133.
    发明授权
    Real-time asynchronous event aggregation systems 有权
    实时异步事件聚合系统

    公开(公告)号:US09348788B2

    公开(公告)日:2016-05-24

    申请号:US14290072

    申请日:2014-05-29

    Applicant: YAHOO! INC.

    Abstract: A real-time asynchronous event aggregation system, method, and network device are configured to capture real-time asynchronous events, and to pass them as input to one or more aggregation engines to determine a reputation for a target. The aggregation engine(s) may then send out notifications where a reputation category changes for a target, indicating that an action may be taken to inhibit spam messages from the target, highlight a display of content from the target, or the like. As such, the event-driven aggregation engines may be designed to capture real-time asynchronous events, such as reputation reports for a wide variety of activities, including, but not limited to spam and/or not-spam messages, determining a reputation on a posting of comments to a movie, a blog posting, a play list posting, or the like. In one embodiment, a reputation of the sender of the reputation event may also be determined.

    Abstract translation: 将实时异步事件聚合系统,方法和网络设备配置为捕获实时异步事件,并将其作为输入传递给一个或多个聚合引擎,以确定目标的信誉。 聚合引擎然后可以发出信息类别针对目标改变的通知,指示可以采取行动来抑制来自目标的垃圾邮件消息,突出显示来自目标的内容等。 因此,事件驱动聚合引擎可以被设计为捕获实时异步事件,例如用于各种活动的信誉报告,包括但不限于垃圾邮件和/或非垃圾邮件,确定信誉的信誉 将评论发布到电影,博客发布,播放列表发布等。 在一个实施例中,也可以确定信誉事件的发送者的声誉。

    E-COMMERCE RECOMMENDATION SYSTEM AND METHOD
    136.
    发明申请
    E-COMMERCE RECOMMENDATION SYSTEM AND METHOD 审中-公开
    电子商务推荐系统与方法

    公开(公告)号:US20160110794A1

    公开(公告)日:2016-04-21

    申请号:US14518431

    申请日:2014-10-20

    Applicant: YAHOO! INC.

    CPC classification number: G06Q30/0631 G06K9/00677 G06K9/6256 G06K9/6277

    Abstract: Disclosed herein is item recommender that uses a model trained using a combination of at least visual item similarity training data and social activity training data. The model may be used, for example, to identify a set of recommended products having similar visual features as a given product. The set of recommended products may be presented to the user along with the given product. The model may be continuously updated using feedback from users to identify the features considered to be important to the users relative to other features.

    Abstract translation: 本文公开了使用使用至少视觉项目相似性训练数据和社交活动训练数据的组合训练的模型的项目推荐者。 例如,该模型可以用于识别具有与给定产品相似的视觉特征的一组推荐产品。 推荐产品的集合可以与给定的产品一起呈现给用户。 可以使用来自用户的反馈来不断更新该模型,以识别被认为对用户相对于其他特征重要的特征。

    COUPON PROVIDER
    137.
    发明申请
    COUPON PROVIDER 审中-公开

    公开(公告)号:US20160110767A1

    公开(公告)日:2016-04-21

    申请号:US14519858

    申请日:2014-10-21

    Applicant: Yahoo!, Inc.

    CPC classification number: G06Q30/0256 G06Q50/01

    Abstract: One or more methods and/or techniques for coupon providing is provided herein. A user, of a client device, may search for an entity (e.g., a consumer product and/or service). The entity may be associated with a domain (e.g., a business that offers the entity for purchase). An advertisement associated with the entity and/or the domain may be identified. A coupon associated with the advertisement for the domain may be identified. The coupon may be applicable to the entity. The advertisement and the coupon may be provided on a webpage.

    Abstract translation: 本文提供了一种或多种用于优惠券提供的方法和/或技术。 客户端设备的用户可以搜索实体(例如,消费者产品和/或服务)。 实体可以与域(例如,提供购买实体的业务)相关联。 可以识别与实体和/或域相关联的广告。 可以识别与域的广告相关联的优惠券。 优惠券可能适用于该实体。 广告和优惠券可以在网页上提供。

    ONLINE AD CAMPAIGN TUNING WITH PID CONTROLLERS
    138.
    发明申请
    ONLINE AD CAMPAIGN TUNING WITH PID CONTROLLERS 审中-公开
    带PID控制器的在线广告调试

    公开(公告)号:US20160110755A1

    公开(公告)日:2016-04-21

    申请号:US14518601

    申请日:2014-10-20

    Applicant: Yahoo! Inc.

    CPC classification number: G06Q30/0244

    Abstract: Described herein are techniques and systems for online ad campaign tuning using proportional-integral-derivative (PID) controllers, such as proportional (P) controllers and proportional-integral (PI) controllers. Also, described herein are techniques and systems for shortening a learning/tuning phase of a PID controller used for optimizing an online ad campaign.

    Abstract translation: 这里描述了使用比例积分微分(PID)控制器(例如比例(P)控制器和比例积分(PI))控制器在线广告活动调整的技术和系统。 此外,这里描述的是用于缩短用于优化在线广告活动的PID控制器的学习/调整阶段的技术和系统。

    METHOD AND SYSTEM FOR COLD-START ITEM RECOMMENDATION
    139.
    发明申请
    METHOD AND SYSTEM FOR COLD-START ITEM RECOMMENDATION 审中-公开
    用于加速项目建议的方法和系统

    公开(公告)号:US20160110646A1

    公开(公告)日:2016-04-21

    申请号:US14519273

    申请日:2014-10-21

    Applicant: Yahoo! Inc.

    Abstract: Method, system, and programs for estimating interests of a plurality of users with respect to a new piece of information are disclosed. In one example, historical interests of the plurality of users are obtained with respect to one or more existing pieces of information. One or more users are selected from the plurality of users. Historical interests of the one or more users can minimize an objective function over the plurality of users. Interests of the one or more users are obtained with respect to the new piece of information. Estimated interests of the plurality of users are generated with respect to the new piece of information based on the obtained interests of the one or more users.

    Abstract translation: 公开了用于估计关于新信息的多个用户的兴趣的方法,系统和程序。 在一个示例中,针对一个或多个现有的信息获得多个用户的历史兴趣。 从多个用户中选择一个或多个用户。 一个或多个用户的历史兴趣可以使多个用户的目标功能最小化。 获得关于新的信息的一个或多个用户的兴趣。 基于获得的一个或多个用户的兴趣,针对新的信息片段生成多个用户的估计兴趣。

    ONLINE PRODUCT TESTING USING BUCKET TESTS
    140.
    发明申请
    ONLINE PRODUCT TESTING USING BUCKET TESTS 审中-公开
    在线产品测试使用BUCKET测试

    公开(公告)号:US20160103758A1

    公开(公告)日:2016-04-14

    申请号:US14509741

    申请日:2014-10-08

    Applicant: Yahoo! Inc.

    CPC classification number: G06F8/65 G06F11/3684 G06F11/3692

    Abstract: The technologies described herein use a statistical test to determine whether differences between data sets of buckets in a bucket test, such as differences between averages of two buckets (e.g., differences between means of two buckets), are directionally larger than a predetermined or preset minimum threshold value. The statistical test may also provide an extension to specify the minimum threshold value as a percentage. Also, described herein are techniques for estimating different control variables of a bucket test, such as estimating minimum bucket size to provide sufficient statistical power with use of the minimum threshold value.

    Abstract translation: 本文描述的技术使用统计测试来确定桶测试中的桶的数据组之间的差异,例如两个桶的平均值之间的差异(例如,两个桶的装置之间的差异)是否定向地大于预定的或预设的最小值 阈值。 统计测试还可以提供一个扩展,以百分比形式指定最小阈值。 此外,这里描述的是用于估计桶测试的不同控制变量的技术,例如使用最小阈值来估计最小桶大小以提供足够的统计功率。

Patent Agency Ranking