Abstract:
A method and apparatus for the automatic inspection of a surface is provided, the method including the steps of irradiating an area of the surface from at least two different directions using a different wavelength of electromagnetic radiation in each of the directions, and using a camera in order to recover an image of the irradiated surface, characterized in that the electromagnetic radiation is infra-red radiation.
Abstract:
A system and method for compensating for geometrical distortion of a thermal image, generated by an infrared line-scanner, caused by non-uniform motion of an image object that utilizes a calibration object and interactive software to form non-rectangular zone boundaries that compensate for image distortion.
Abstract:
A method and apparatus for improving the sensitivity, angular resolution and range of motion detectors, occupancy sensors and similar systems are described. Specifically, an improved infrared input and detection section is described which utilizes two dual-detectors configured to optimally operate equivalent to a single quad-detector.
Abstract:
A terahertz (THz) frequency radiation source to emit radiation in a narrow wavelength band within a range of about 3 nullm to 3000 nullm. This source includes: a broad bandwidth emitter to generate a broad bandwidth emitted wavelength band within the wavelength range; a first planar waveguide optically coupled to the broad bandwidth emitter to transmit the broad bandwidth radiation; a disk resonator evanescently coupled to the first planar waveguide with a resonance wavelength band within the emitted wavelength band; and a second planar waveguide evanescently coupled to the disk resonator to transmit radiation in the narrow wavelength band. The emitted wavelength band has a bandwidth greater than or equal to about 0.01 times a mid-band wavelength. The resonance wavelength band has a resonance wavelength bandwidth of less than or equal to about 0.25 times the emitted bandwidth. The narrow wavelength band is substantially equal to the resonance wavelength band.
Abstract:
An FT-IR microscope is operated in association with a scanning spectrometer in such a way that incremental movement of the movable stage of 5 the microscope is synchronized with the scans of the scanning spectrometer. This minimizes delays in processing time.
Abstract:
A wide-angle IR imaging system (1A) has an entrance aperture (40) for admitting IR from a scene and a dewar (4A) that contains a coldshield (3) that encloses a cooled IR detector (2) disposed at an image plane (2A). The dewar includes a dewar window (4), and an optical axis of the IR imaging system passes through the dewar window and the image plane. The IR imaging system further includes a plurality of uncooled optical elements (22, 24, 26, 28) disposed along the optical axis between the entrance aperture and the dewar window, and a plurality of generally annular reflector segments (18A, 18B) disposed around the optical axis between the dewar window and the entrance aperture. Each of the reflector segments has a reflective surface that faces the dewar window. An opening through an outermost reflector segment furthest from the dewar window defines an effective cooled aperture stop, or warm stop (20A) of the IR imaging system, and at least one of the optical elements (22) is disposed between the effective cooled aperture stop and another one of the reflector segments (18A) that is located nearer to the dewar window. In the preferred embodiment the at least one optical element, and the reflector segment that is located nearer to the dewar window, are comprised of a single monolithic body (31) that has a compound optical surface.
Abstract:
In a sensor for detecting a carbon dioxide gas in an expiration gas of a living body, an airway case is adapted to be disposed below nostrils of the living body, and formed with an airway passage extending across an optical axis of a light beam emitted from a right emitter of the sensor. A mouth guide is adapted to be disposed in front of a mouth of the living body so as to define a space communicated with the airway passage. The mouth guide is pivotably supported on the airway case. A retainer is adapted to retain an oxygen supply tube on the airway adapter body in such an attitude that an oxygen gas supplied from prongs of the oxygen supply tube is not directly injected into the nostrils.
Abstract:
A device for improving the view in a motor vehicle. It includes with a radiation source for illumination of the vehicle environment with infrared radiation, an infrared sensitive camera for detecting at least a part of the illuminated vehicle environment and a display for presenting the image information detected by the camera. In accordance with the invention, the camera is provided with an IR-filter which exhibits areas of differing transmission characteristics. The IR-filter thereby exhibits at least one area with a degree of transmission of approximately 70% for visible light or parts thereof and preferably at least a second area with a degree of transmission of approximately or less than 10null5 for visible light. By this design of the device for improving the view in a motor vehicle it is made possible to provide a reliable detection if the vehicle environment and thereby to more reliably map out the road traffic.
Abstract:
A thermal imaging method to detect heat flows from naturally-heated subsurface objects. The method uniquely combines precise, emissivity-corrected temperature maps, thermal inertia maps, temperature simulations, and automatic target recognition to display clear, clutter-free, three-dimensional images of contained hollow objects or structures, at depths to 20 times their diameter. Temperature scans are corrected using two different infrared bands. Co-registered object-site temperature scans image daily and seasonal temperature-spread differences, which vary inversely as the object's and surrounding host material's thermal inertias. Thermal inertia (resistance to temperature change) is the square root of the product (knullC), for thermal conductivity, k, density, null and heat capacity, C.
Abstract:
The invention relates to a method and to a device for testing electronic circuits or the parts thereof on printed circuits. The inventive method comprises the following steps: (a) detecting the radiation that is emitted by the surface of the printed circuit, (b) converting the detected radiation to data that represent a surface structure and/or depth structure of the printed circuit, (c) comparing the data of the surface structure and/or the depth structure with stored data of a desired state of the surface structure and/or depth structure, and (d) determining any deviations between the data of the detected surface structure and/or depth structure and the data of the desired state of the surface structure and/or depth structure.