Abstract:
A communication system includes: a module configured to decode a remainder portion of a receiver message using a mechanism with a compensation channel value calculated from decoding an evaluation portion of the receiver message with a different mechanism, or using a mechanism-controller generated using a mismatch characterization based on determining a partial-sensitive output and a partial-insensitive output, or a combination thereof for communicating with a device.
Abstract:
A method for training a generator, by a generator training system including a processor and memory, includes: extracting training statistical characteristics from a batch normalization layer of a pre-trained model, the training statistical characteristics including a training mean μ and a training variance σ2; initializing a generator configured with generator parameters; generating a batch of synthetic data using the generator; supplying the batch of synthetic data to the pre-trained model; measuring statistical characteristics of activations at the batch normalization layer and at the output of the pre-trained model in response to the batch of synthetic data, the statistical characteristics including a measured mean {circumflex over (μ)}ψ and a measured variance {circumflex over (σ)}ψ2; computing a training loss in accordance with a loss function Lψ based on μ, σ2, {circumflex over (μ)}ψ, and {circumflex over (σ)}ψ2; and iteratively updating the generator parameters in accordance with the training loss until a training completion condition is met to compute the generator.
Abstract:
A method of performing scene-dependent lens shading correction (SD-LSC) is provided. The method includes collecting scene information from a Bayer thumbnail of an input image; generating a standard red green blue (sRGB) thumbnail by processing the Bayer thumbnail of the input image to simulate white balance (WB) and pre-gamma blocks; determining a representative color channel ratio of the input image based on the scene information and the sRGB thumbnail; determining an ideal grid gain of the input image based on the representative color channel ratio and a grid gain of the input image; merging the ideal grid gain and the grid gain of the input image to generate a new grid gain; and applying the new grid gain to the input image.
Abstract:
A system for performing echo cancellation includes: a processor configured to: receive a far-end signal; record a microphone signal including: a near-end signal; and an echo signal corresponding to the far-end signal; extract far-end features from the far-end signal; extract microphone features from the microphone signal; compute estimated near-end features by supplying the microphone features and the far-end features to an acoustic echo cancellation module including a recurrent neural network including: an encoder including a plurality of gated recurrent units; and a decoder including a plurality of gated recurrent units; compute an estimated near-end signal from the estimated near-end features; and transmit the estimated near-end signal to the far-end device. The recurrent neural network may include a contextual attention module; and the recurrent neural network may take, as input, a plurality of error features computed based on the far-end features, the microphone features, and acoustic path parameters.
Abstract:
FIG. 1 is a front perspective view of an electronic device showing our new design; FIG. 2 is a front elevation view thereof; FIG. 3 is a rear elevation view thereof; FIG. 4 is a left side elevation view thereof; FIG. 5 is a right side elevation view thereof; FIG. 6 is a top plan view thereof; FIG. 7 is a bottom plan view thereof; and, FIG. 8 is a rear perspective view thereof. The dashed broken lines in the figures illustrate portions of the electronic device that form no part of the claimed design. The dot-dash broken lines in FIGS. 1, 2, and 5-8 define the boundaries of the claimed design and form no part thereof.
Abstract:
A method and apparatus for variable rate compression with a conditional autoencoder is herein provided. According to one embodiment, a method for compression includes receiving a first image and a first scheme as inputs for an autoencoder network; determining a first Lagrange multiplier based on the first scheme; and using the first image and the first Lagrange multiplier as inputs, computing a second image from the autoencoder network. The autoencoder network is trained using a plurality of Lagrange multipliers and a second image as training inputs.
Abstract:
A hybrid automatic repeat request (HARQ) process method for nonterrestrial networks. In some embodiments, the method includes receiving, by a user equipment (UE), a first downlink control information (DCI), the first DCI including a first hybrid automatic repeat request (HARQ) process identifier (ID); calculating a first HARQ process number based on the first HARQ process ID and on a slot number associated with the first DCI; and processing a first data block via a HARQ process associated with the first HARQ process number.
Abstract:
Disclosed is an electronic device including a memory and a processor electrically connected with the memory. The memory stores instructions that, when executed, cause the processor to control the electronic device to: obtain information about a maximum value of brightness of image content based on metadata of the image content, to perform tone mapping on at least one or more frames corresponding to a preview image of the image content based on the information about the maximum value of the brightness, and to output the preview image based on the at least one or more frames on which the tone mapping is performed, on a display device.
Abstract:
A system and method for positioning in RRC Idle and Inactive states. In some embodiments, the method includes receiving, by a user equipment (UE), in Idle or Inactive state, a downlink positioning reference signal (PRS); transmitting, by the UE, in Idle or Inactive state, an uplink reference signal; and transmitting, by the UE, in Idle or Inactive state, a PUSCH carrying an estimate of the position of the UE. The uplink reference signal may be a positioning sounding reference signal (SRS), or a Physical Random Access Channel (PRACH) preamble with sequence length greater than 1151.
Abstract:
A method and system are provided. The method includes determining a difference map between a reference frame and a non-reference frame, determining a local variance of the reference frame, determining a detail power map based on a difference between the determined local variance and the determined difference map, and determining a detail grade map based on the determined detail power map.