Abstract:
A method is provided for performing a random access procedure by a Node-B with a specific user equipment (UE) within a cell in which a plurality of UEs are located together. The Node-B transmits a random access procedure configuration including a basic sequence index related with a random access channel and zero correlation zone (ZCZ) configuration. The Node-B receives a random access preamble corresponding to the random access procedure configuration from the UE over the random access channel. A length of a cyclic part and a length of a sequence part of the random access preamble are differently given based on the random access procedure configuration. The random access preamble is generated from Constant Amplitude Zero Auto-Correlation (CAZAC) sequences based on the basic sequence index by applying a length of a cyclic shift according to the ZCZ configuration.
Abstract:
A method of activating or deactivating frequency resources at a terminal configured with a primary frequency resource and one or more non-primary frequency resources in a wireless communication system, and the terminal are discussed. The method according to one embodiment includes receiving a medium access control (MAC) signal for activating the one or more non-primary frequency resources; activating the one or more non-primary frequency resources; and deactivating the one or more non-primary frequency resources on expiry of a specific time period configured by radio resource control (RRC) signaling, the specific time period being for which of the one or more non-primary frequency resources are activated.
Abstract:
A method for monitoring a control channel in a multiple carrier system, and a user equipment (UE) therefore are discussed. The method according to one embodiment includes, if an aggregation of carriers is configured and if a carrier indicator field (CIF) is configured, monitoring a plurality of downlink control channels within a plurality of UE-specific search spaces of a first carrier; and receiving downlink control information (DCI) on at least one of the plurality of the downlink control channels, which is successfully decoded, via the first carrier. The DCI includes scheduling information on either a downlink channel or an uplink channel in a second carrier.
Abstract:
A device and method of operating carriers at a user equipment in a wireless communication system includes: configuring, by the user equipment, a plurality of carriers including a first carrier and a second carrier; receiving control information on an activation of the second carrier among the plurality of carriers; activating the second carrier; and deactivating the activated second carrier after a certain amount of time. The certain amount of time is based on a valid time of the activation of the second carrier. The valid time is defined by a number of frames.
Abstract:
A method for transmitting a reference signal by a user equipment (UE) in a wireless communication system. The UE generates an uplink reference signal in a subframe comprising first, second, third, fourth, fifth, sixth and seventh orthogonal frequency division multiplexing (OFDM) symbols in time domain and a plurality of subcarriers in frequency domain. The UE transmits the uplink reference signal to a base station in the third, fourth and fifth OFDM symbols. The transmitted uplink reference signal is hopped in the frequency domain, based on a cell specific hopping parameter.
Abstract:
A method of transmitting control signals in a wireless communication system includes multiplexing a first control signal with a second control signal in a slot, the slot comprising a plurality of orthogonal frequency division multiplexing (OFDM) symbols in time domain, the plurality of OFDM symbols being divided into a plurality of data OFDM symbols and a plurality of reference signal (RS) OFDM symbols, wherein the first control signal is mapped to the plurality of data OFDM symbols after the first control signal is spread by a base sequence in the frequency domain, the RS is mapped to the plurality of RS OFDM symbols, the second control signal is mapped to at least one of the plurality of RS OFDM symbols, and transmitting the first control signal and the second control signal in the slot.
Abstract:
A method for receiving control information by a relay node in a wireless communication system. The method according to one embodiment includes receiving first information indicating downlink subframes assigned for a base station (BS)-to-the relay node transmission as a bitmap; receiving second information related to resource blocks (RBs) for a relay physical downlink control channel (R-PDCCH) transmission; and receiving an R-PDCCH during a number of orthogonal frequency division multiplexing (OFDM) symbols from a fourth OFDM symbol of a corresponding RB of a corresponding downlink subframe n of the downlink subframes.
Abstract:
A method and apparatus for transmitting or detecting primary synchronization signal. The receiver receives primary synchronization signal from a transmitter, and detects the sequence used in the received primary synchronization signal by using three root indexes. Here, the primary synchronization signal is generated by using a Zadoff-Chu sequence having one of the three root indexes. The three root indexes comprise a first index and a second index, and a sum of the first index and the second index corresponds to the length of the Zadoff-Chu sequence.
Abstract:
The present invention relates to a wireless communication system, and more specifically, to a method and an apparatus for transmitting an RS (Reference Signal) from a transmission end. The present invention relates to an RS transmission method and an apparatus therefore, comprising the steps of: confirming RS resources which are defined according to each layer; and transmitting the precoded RS for the layers to a receiving end through a multiple antenna, wherein the RS resource includes a 1st index for indicating an RS resource pattern group in which the precoded RS is mapped within a resource block and a 2nd index for indicating a code resource for multiplexing the precoded RSs within the RS resource pattern group.
Abstract:
A user equipment in wireless communication system is provided. The user equipment includes an antenna unit including a plurality of antennas, a control unit for grouping the plurality of antennas into a predetermined number of antenna groups and controlling separately transmission power of each of the predetermined number of antenna groups, and a transmitting unit, connected to the control unit, for transmitting at least one of data and control information to a base station via at least one of the predetermined number of antenna groups.