Abstract:
A washer-dryer apparatus has a blower for sucking air from a water tank and blowing the air into a washing and dewatering tub. At an inlet of the blower is provided a filter, which is cleaned by a cleaning device (300). The cleaning device (300) has a main body (301) pivotable about one end thereof relative to an outer bottom surface of the water tank, a brush (302) provided on the other end of the main body, and a bias spring (303) for biasing the main body toward an opening direction. The main body (301) is subjected to a dynamic pressure of water in the water tank and thereby pivots in an opening direction. When the main body (301) has the pivoting angle of 90°, the brush (302) is in contact with the filter.
Abstract:
Face detection is executed only on an image imaged based on an arbitrary (predetermined) focal point information defined in advance. In face detection, the face of a person is detected based on a relative value of statistics in a plurality of characteristic regions produced by contour or parts of the face of the person. Thus, even if the face in the image used for face detection is blurred, the statistics in a certain region can be acquired, and thus such face is detectable. Therefore, the primary subject to be focused can be rapidly detected without performing focal point control at a stage of preliminary imaging in the imaging apparatus.
Abstract:
A substrate 1 for growing nitride semiconductor has a first and second face and has a thermal expansion coefficient that is larger than that of the nitride semiconductor. At least n-type nitride semiconductor layers 3 to 5, an active layer 6 and p-type nitride semiconductor layers 7 to 8 are laminated to form a stack of nitride semiconductor on the first face of the substrate 1. A first bonding layer including more than one metal layer is formed on the p-type nitride semiconductor layer 8. A supporting substrate having a first and second face has a thermal expansion coefficient that is larger than that of the nitride semiconductor and is equal or smaller than that of the substrate 1 for growing nitride semiconductor. A second bonding layer including more than one metal layer is formed on the first face of the supporting substrate. The first bonding layer 9 and the second bonding layer 11 are faced with each other and, then, pressed with heat to bond together. After that, the substrate 1 for growing nitride semiconductor is removed from the stack of nitride semiconductor so that a nitride semiconductor device is provided.
Abstract:
A surface emitting laser includes an n-side multilayered reflection film and an active layer which are formed on a substrate. On the active layer, a mesa region is formed by sequentially stacking an AlGaAs current blocking layer, a p-side multilayered reflection film, a p-type contact layer and the like. A groove is formed to separate the mesa region from an outside region. The mesa region and the outside region are connected to each other with a beam portion provided in the groove. A reflection film with a high Al composition ratio in the p-side multilayered reflection film in the beam portion is completely oxidized, and thus has a high resistance.
Abstract:
A mapping block locates the own vehicle and another vehicle on a map DB. Another-vehicle intersection detecting block detects intersections located on a traveling path of another vehicle. An own-vehicle intersection detecting block detects intersections located in front of the own vehicle. A collision-intersection identifying block identifies an intersection that is identical to each other as the possible collision intersection by comparing the intersections detected. An information providing block conducts information provision based on calculations of an arriving time of another vehicle by using a distance to the possible collision intersection and a vehicle speed. Accordingly, the collision possibility with another vehicle can be accurately determined.
Abstract:
A substrate 1 for growing nitride semiconductor has a first and second face and has a thermal expansion coefficient that is larger than that of the nitride semiconductor. At least n-type nitride semiconductor layers 3 to 5, an active layer 6 and p-type nitride semiconductor layers 7 to 8 are laminated to form a stack of nitride semiconductor on the first face of the substrate 1. A first bonding layer including more than one metal layer is formed on the p-type nitride semiconductor layer 8. A supporting substrate having a first and second face has a thermal expansion coefficient that is larger than that of the nitride semiconductor and is equal or smaller than that of the substrate 1 for growing nitride semiconductor. A second bonding layer including more than one metal layer is formed on the first face of the supporting substrate. The first bonding layer 9 and the second bonding layer 11 are faced with each other and, then, pressed with heat to bond together. After that, the substrate 1 for growing nitride semiconductor is removed from the stack of nitride semiconductor so that a nitride semiconductor device is provided.
Abstract:
An opposed terminal structure including a supporting substrate, a first terminal, a nitride semiconductor with a light-emitting layer, and a second terminal. The second terminal forms an opposed terminal structure with the first terminal, which can be formed in a variety of patterns.
Abstract:
A distribution management system includes an output terminal and a distribution management apparatus that manages distribution of items routed through distribution points in a predetermined order and transported to destinations, and determines, for each item delivery request, from which distribution point, items in stock should be allocated. The apparatus stores stock information indicating a quantity of currently and/or prospectively allocatable items, receives a delivery request, including a delivery time limit, to have specified items delivered, and judges whether an immediate delivery is indicated. The apparatus selects, (i) if judged in the affirmative, the last distribution point before the destination as an allocation point when it has allocatable articles in stock, and (ii) if judged in the negative, selects a distribution point other than the last distribution point as the allocation point when it has allocatable articles in stock, and transmits information indicating the allocation point to the output terminal.
Abstract:
A non-fixing type image receiving sheet to which toner particles are made adhere in a removable manner and an image forming apparatus. The image receiving sheet has a large number of concave portions accepting toner particles and a large number of convex portions protecting toner particles are formed on a surface of the image receiving sheet. The image forming apparatus has a sheet charging apparatus which charges the surface of the image receiving sheet to a polarity opposite to a charged polarity of toner particles, in advance of a transferring process.
Abstract:
A picture image forming apparatus including a photoreceptor belt driven by a drive device, a plurality of developing devices for forming toner picture images on the photoreceptor belt, an intermediate transfer device, to a surface of which toner picture images on the photoreceptor belt are overlappingly transferred plural times when a picture image is to be formed on a single page, and a transfer roller for pushing a sheet against the intermediate transfer device in order to transfer toner picture images to the sheet. The intermediate transfer device is an intermediate transfer belt contacted by the photoreceptor belt to be driven thereby. A photoreceptor-side roller enables contact of the intermediate transfer belt and the photoreceptor belt, and the intermediate transfer belt is trained around the photoreceptor-side roller and a transfer-side roller for pushing the sheet against the transfer roller. A diameter d2 of the transfer-side roller is smaller than a diameter d1 of the photoreceptor-side roller.