Abstract:
A light-emitting device includes a light-emitting element and a light-guiding member for causing light from the light-emitting element entering into it through one surface thereof. The light-emitting element includes a lead member with a light-emitting element chip mounted thereon and a molded member to which the lead member is secured. The lead member has a metallic part extending from the molded member, and the metallic part is bent. The thus arranged light-emitting device has an excellent heat release capability. An image reading apparatus using the light-emitting device is also provided.
Abstract:
There is provided such a shape of a light-guiding body that can guide light emitted from a LED while reflecting such light under conditions which satisfy total reflection as much as possible within the light-guiding body, to thereby improve the light intensity on the surface of a document in the shorter axial direction (i.e., the sub-scanning direction), and also, the light-guiding body has such an optimized shape of a light-incoming face that makes it possible to control the angle of light fluxes in the longer axial direction (i.e., the main scanning direction) to thereby illuminate the surface of the document with light having an uniform intensity distribution. Further, a reflecting member is provided at a position opposite the light outgoing face of the light-guiding body so as to improve the efficiency of illuminating an objective image-reading region on the surface of the document.
Abstract:
A light guide capable of reducing the degrading of the read image, even when the document face is raised, by expanding the distribution of light intensities in the longitudinal direction in the position of the irradiated item (document position), and a line illuminator into which the light guide is incorporated. The light guide emits lights incident on an end face from an emitting face extending longitudinally, while having the lights reflected by an internal face of the guide. The sectional shape of the internal face in a direction orthogonal to the longitudinal direction is provided with first and second oval arc curved faces, first and second emitting faces, and a light scattering part formed on the focal position (or a position near the focus) of the oval on the longer axis plane of each oval. The concentrating position of lights reflected by the first curved face and the concentrating position of lights reflected by the second curved face are different from each other.
Abstract:
There is provided such a shape of a light-guiding body that can guide light emitted from a LED while reflecting such light under conditions which satisfy total reflection as much as possible within the light-guiding body, to thereby improve the light intensity on the surface of a document in the shorter axial direction (i.e., the sub-scanning direction), and also, the light-guiding body has such an optimized shape of a light-incoming face that makes it possible to control the angle of light fluxes in the longer axial direction (i.e., the main scanning direction) to thereby illuminate the surface of the document with light having an uniform intensity distribution. Further, a reflecting member is provided at a position opposite the light outgoing face of the light-guiding body so as to improve the efficiency of illuminating an objective image-reading region on the surface of the document.
Abstract:
There is disclosed an illumination device in which a light guide is adapted to emit the light from a face thereof and is provided with an area, on a face opposite to the light emitting face, for diffusing and/or reflecting the light introduced into the light guide from an end face thereof or is provided with uneven light emitting characteristics along the longitudinal direction of the light guide, and the center of the light source positioned at the end of the light guide is placed at a position aberrated from the normal line to the area, whereby attained are compactness, a low cost, a low electric power consumption, a high efficiency of utilization of the light emitted by the light source, and excellent and uniform illumination characteristics. There are also disclosed an image reading device and an information processing apparatus, equipped with the above-mentioned illumination device.
Abstract:
There is disclosed an illumination device in which a light guide is adapted to emit the light from a face thereof and is provided with an area, on a face opposite to the light emitting face, for diffusing and/or reflecting the light introduced into the light guide from an end face thereof or is provided with uneven light emitting characteristics along the longitudinal direction of the light guide, and the center of the light source positioned at the end of the light guide is placed at a position aberrated from the normal line to the area, whereby attained are compactness, a low cost, a low electric power consumption, a high efficiency of utilization of the light emitted by the light source, and excellent and uniform illumination characteristics. There are also disclosed an image reading device and an information processing apparatus, equipped with the above-mentioned illumination device.
Abstract:
There is disclosed a light guide for guiding light from a light source in a longitudinal direction and radiating the light to illuminate an object to be illuminated, which comprises a diffuser for diffusing the light from the light source along the longitudinal direction of the light guide, and a radiator for radiating the light diffused by the diffuser in a predetermined direction. By arranging the diffuser and the radiator so that a normal line passing through the center of the width of the diffuser is different from the predetermined direction at least in the vicinity of the light source when viewed in the longitudinal direction of the light guide, the illuminance distribution of the longitudinal direction of the light guide is uniformed.
Abstract:
There is disclosed a light guide for guiding light from a light source in a longitudinal direction and radiating the light to illuminate an object to be illuminated, which comprises a diffuser for diffusing the light from the light source along the longitudinal direction of the light guide, and a radiator for radiating the light diffused by the diffuser in a predetermined direction. By arranging the diffuser and the radiator so that a normal line passing through the center of the width of the diffuser is different from the predetermined direction at least in the vicinity of the light source when viewed in the longitudinal direction of the light guide, the illuminance distribution of the longitudinal direction of the light guide is uniformed.
Abstract:
A coating film 9 is formed on a light guide-mounting portion of a frame 2. This coating film 9 presents a color reflecting light over a wide range of wavelength such as a white color. Instead of forming the coating film 9, a light guide 3 can also be mounted through a thin paper-shaped member such as a white-colored paper or a silver-colored paper that allows light to reflect. The coating film or the thin paper-shaped member can be provided not only on the bottom surface of the light guide-mounting portion of the frame 2, but also on the side thereof.
Abstract:
There is disclosed a light guide for guiding light from a light source in a longitudinal direction and radiating the light to illuminate an object to be illuminated, which comprises a diffuser for diffusing the light from the light source along the longitudinal direction of the light guide, and a radiator for radiating the light diffused by the diffuser in a predetermined direction. By arranging the diffuser and the radiator so that a normal line passing through the center of the width of the diffuser is different from the predetermined direction at least in the vicinity of the light source when viewed in the longitudinal direction of the light guide, the illuminance distribution of the longitudinal direction of the light guide is uniformed.