Abstract:
A modular biopsy, ablation and track coagulation needle apparatus is disclosed that allows the biopsy needle to be inserted into the delivery needle and removed when not needed, and that allows an inner ablation needle to be introduced and coaxially engaged with the delivery needle to more effectively biopsy a tumor, ablate it and coagulate the track through ablation while reducing blood loss and track seeding. The ablation needle and biopsy needle are adapted to in situ assembly with the delivery needle. In a preferred embodiment, the ablation needle, when engaged with the delivery needle forms a coaxial connector adapted to electrically couple to an ablating source. Methods for biopsying and ablating tumors using the device and coagulating the track upon device removal are also provided.
Abstract:
A modular biopsy, ablation and track coagulation needle apparatus is disclosed that allows the biopsy needle to be inserted into the delivery needle and removed when not needed, and that allows an inner ablation needle to be introduced and coaxially engaged with the delivery needle to more effectively biopsy a tumor, ablate it and coagulate the track through ablation while reducing blood loss and track seeding. The ablation needle and biopsy needle are adapted to in situ assembly with the delivery needle. In a preferred embodiment, the ablation needle, when engaged with the delivery needle forms a coaxial connector adapted to electrically couple to an ablating source. Methods for biopsying and ablating tumors using the device and coagulating the track upon device removal are also provided.
Abstract:
A modular biopsy, ablation and track coagulation needle apparatus is disclosed that allows the biopsy needle to be inserted into the delivery needle and removed when not needed, and that allows an inner ablation needle to be introduced and coaxially engaged with the delivery needle to more effectively biopsy a tumor, ablate it and coagulate the track through ablation while reducing blood loss and track seeding. The ablation needle and biopsy needle are adapted to in situ assembly with the delivery needle. In a preferred embodiment, the ablation needle, when engaged with the delivery needle forms a coaxial connector adapted to electrically couple to an ablating source. Methods for biopsying and ablating tumors using the device and coagulating the track upon device removal are also provided.
Abstract:
A tunable microwave ablation catheter system is disclosed which matches the impedance of its power supply with the transmission line to minimize reflected power and optimize energy delivery to targeted tissues. The tuner itself may be located in the power supply, the transmission line or the antenna. Tuner mechanisms at these locations can change the antenna configuration, move material relative to the antenna, or alter the waveguide. A controller monitors the catheter system operation. A method of medical treatment is disclosed where the impedances of the components of the systems are adjusted during use to compensate for impedance variations.
Abstract:
An ablation catheter is disclosed that include a mechanism for altering the impedance of the antenna during use in a controlled manner to tune the catheter. The impedance tuning may be accomplished in a variety of manners including altering the electromechanical configuration of the antenna and moving a material relative to the antenna or vice versa in order to vary the effective impedance during use. In a preferred embodiment, the ablation catheter transmits energy in the microwave frequencies and uses a coaxial transmission line as its waveguide. The antenna is preferably helical in nature and is carried by the distal end of the transmission line.
Abstract:
A cardiac ablation apparatus including a solenoidal antenna, monitoring electrodes, and a coupling network at a distal end of a catheter transmission line, and another coupling network at the proximal end of the catheter transmission line to connect the catheter to the source of radiofrequency (RF) power and to an intracardiac electrogram monitor. Solenoidal antenna design includes single and multiple windings with varying geometrical features. Plated plastic tri-axial design of a transmission line offers unitary fabrication. A catheter with variable impedance electrode and gap coatings has features useful for both ablation and for hyperthermia applications.
Abstract:
Radiofrequency (RF) heating applicator, located at the distal end of a coaxial line catheter, produces deeper and more uniform heat dissipation. The active applicator element is a conductor helix fed via the coaxial line. The applicator has provisions for interception of intracardiac electrogram signal. A cardiac ablation system using the above catheter, ablates cardiac tissue responsible for ventricular tachycardia. The ablation system provides means to monitor intracardiac electrograms and to control the RF power. A variation of the helical applicator can be used in a hyperthermia system for treatment of malignant tumors.
Abstract:
A kit for delivering microwave ablative energy to tissue and methods for using the kit are included. The kit includes an access catheter, an implant deployment tool, and a microwave delivery device. The implant deployment tool is configured to be inserted into the access catheter and has an implant disposed therein in a contracted state and being slidable out of a distal opening and expandable into an expanded state. The microwave delivery device is configured to deliver the microwave ablative energy to the tissue and to be advanced through the access catheter and slidably disposable within the implant when the implant is in the expanded state.
Abstract:
A flexible instrument comprises an antenna having a distal tip portion shaped to perforate tissue, a proximal base, and an antenna body therebetween. The antenna body comprises a patterned cylindrical structure having antenna body elements spatially separated from each other and having a proximal end coupled to the proximal base and a distal end coupled to the distal tip portion. The distal tip portion is disposed distally of the distal end. The antenna comprises a first material having a flexible plastic deformation limit and a second material plated onto the first material. The second material is more conductive than the first material. The flexible instrument further comprises an adjustment device configured to adjust pitch lengths between adjacent antenna body elements and is configured to generate a radiation pattern from the antenna that varies based on the pitch length between the adjacent antenna body elements to ablate tissue.
Abstract:
An energy delivery system includes a transmission member, an antenna at a distal end of the transmission member, a jacket surrounding the transmission member and the antenna, a fluid channel between the transmission member and the jacket, and a plug disposed at the distal end of the transmission member and a proximal end of the antenna. The plug is configured to prevent migration of a cooling fluid from the fluid channel to a cavity between the antenna and the jacket.