Abstract:
The present invention relates to a method and device for receiving a multimedia broadcast multicast service (MBMS) in a mobile communication system. The method for receiving the MBMS of a terminal in the mobile communication system according to an embodiment of the present invention is characterized in that it includes: determining whether service area ID (SAI) information on a serving cell is broadcast during the MBMS; receiving the SAI information on the serving cell when it is determined that the SAI information is broadcast; determining, by using the received SAI information of the serving cell, whether an SAI of the MBMS matches the SAI of the serving cell; and changing the cell reselection priority of the frequency of the serving cell to the highest priority if it is determined that the SAI of the MBMS matches the SAI of the serving cell. According to the present invention, it is possible to efficiently receive MBMS services by enabling a terminal to select a proper frequency or cell when an MBMS service of interest starts.
Abstract:
A method and apparatus are provided for reporting a buffer status to a Node B, by a User Equipment (UE), in a mobile communication system. The method includes checking if a resource for data to be transmitted to the Node B is available, when there is a buffer status report triggered to be transmitted to the Node B; transmitting the buffer status report by using the available resource, if the resource is available; and transmitting a scheduling request to the Node B, if the resource has not been allocated for a predetermined time after the buffer status report is triggered.
Abstract:
Methods and apparatuses are provided for establishing time alignment by a terminal in a mobile communication system. First information for discontinuous reception (DRX) operation is received from a base station. A downlink control channel is monitored based on the first information. Second information for identifying a dedicated preamble on the downlink control channel is received from the base station. The dedicated preamble is transmitted to the base station based on the second information. A response message to the transmitted dedicated preamble is received from the base station on a downlink shared channel. The response message includes timing adjustment information and third information for a channel quality indicator (CQI) report. Time alignment is established based on the timing adjustment information included in the response message. The CQI report is transmitted to the base station based on the third information.
Abstract:
A method and an apparatus for transmitting and receiving System Information (SI) of a femto base station in a wireless communication system are provided. In the method, an SI transmission point is determined using unique identification information of a femto base station itself and unique identification information of a macro base station with which the femto base station is associated. Each of user equipment and the macro base station generate a measurement gap pattern representing an SI reception point using the unique identification information of the femto base station and the unique identification information of the macro base station. SI is received from the femto base station according to the generated measurement gap pattern.
Abstract:
The present invention relates to a method and device for receiving a multimedia broadcast multicast service (MBMS) in a mobile communication system. The method for receiving the MBMS of a terminal in the mobile communication system according to an embodiment of the present invention is characterized in that it includes: determining whether service area ID (SAI) information on a serving cell is broadcast during the MBMS; receiving the SAI information on the serving cell when it is determined that the SAI information is broadcast; determining, by using the received SAI information of the serving cell, whether an SAI of the MBMS matches the SAI of the serving cell; and changing the cell reselection priority of the frequency of the serving cell to the highest priority if it is determined that the SAI of the MBMS matches the SAI of the serving cell. According to the present invention, it is possible to efficiently receive MBMS services by enabling a terminal to select a proper frequency or cell when an MBMS service of interest starts.
Abstract:
A method and apparatus for performing communication in a wireless communication system are provided. The method includes identifying a transmission mode configured for a serving cell by a Base Station (BS), by a User Equipment (UE), identifying an antenna configuration of the BS by the UE, determining the number of bits for a Rank Indication (RI) representing the number of layers based on the transmission mode and the antenna configuration, and generating an RI using the determined number of bits and transmitting the RI in transmission resources of the serving cell to the BS by the.
Abstract:
A method and apparatus for performing communication in a wireless communication system are provided. The method includes receiving Measurement Gap (MG) configuration information related to the measurement gap, determining a subframe number specifying a starting point of the measurement gap based on the measurement gap configuration information, starting the measurement gap at an end of a subframe immediately before a subframe of the determined subframe number, performing a predetermined measurement operation during the measurement gap, and performing a predetermined operation in a subframe immediately after the measurement gap based on a duplexing mode of a User Equipment (UE) and a type of the subframe immediately before the measurement gap.
Abstract:
An apparatus, circuit, and method for controlling a service access in a packet data communication system are provided. The method includes broadcasting information related to whether a service access to a specific service is possible.
Abstract:
Methods and apparatuses are provided for transmitting and receiving system information (SI). A method for receiving SI by a user equipment (UE) in a mobile communication system includes receiving, by the UE, the SI including first partial bits of a system frame number (SFN) without second partial bits of the SFN on a broadcast channel (BCH) at a first subframe of a radio frame, the first partial bits of the SFN having the same value during a predetermined N successive radio frames of a BCH transmission period, where N is a positive integer; and acquiring, by the UE, the second partial bits of the SFN for the radio frame, the second partial bits of the SFN having different values in different radio frames of the predetermined N successive radio frames of the BCH transmission period.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method for communication by a base station is provided. The method includes transmitting a scheduling assignment including a first part of a destination identifier (ID), and transmitting a medium access control (MAC) protocol data unit (PDU) including a MAC header including a user equipment (UE) ID and a second part of the destination ID.