Abstract:
Using the same image sensor to capture a two-dimensional (2D) image and three-dimensional (3D) depth measurements for a 3D object. A laser point-scans the surface of the object with light spots, which are detected by a pixel array in the image sensor to generate the 3D depth profile of the object using triangulation. Each row of pixels in the pixel array forms an epipolar line of the corresponding laser scan line. Timestamping provides a correspondence between the pixel location of a captured light spot and the respective scan angle of the laser to remove any ambiguity in triangulation. An Analog-to-Digital Converter (ADC) in the image sensor operates as a Time-to-Digital Converter (TDC) to generate timestamps. When the epipolar line is misaligned or curved, multiple TDC arrays acquire timestamps of multiple pixels (in multiple rows) substantially simultaneously. Multiple timestamp values are reconciled to obtain a single timestamp value for a light spot.
Abstract:
An embodiment includes a system, comprising a first memory; a plurality of first circuits, wherein each first circuit is coupled to the memory; and includes a second circuit configured to generate a first output value in response to an input value received from the first memory; and an accumulator configured to receive the first output value and generate a second output value; and a controller coupled to the memory and the first circuits, and configured to determine the input values to be transmitted from the memory to the first circuits.
Abstract:
An imaging device has an array with pixels that can image an aspect of an object. In addition, pixels in the array can be used to perform motion detection or edge detection. A first and a second pixel can integrate light non-concurrently, and then their outputs may be compared. A difference in their outputs may indicate an edge in an imaging operation, and motion in a motion detection operation. The motion detection operation may be performed without needing the imaging device to have an additional modulated LED light source, and to spend the power to drive that source.
Abstract:
A depth pixel includes a photo detection unit, an ambient light removal current source, a driving transistor and a select transistor. The photo detection unit is configured to generate a light current based on a received light reflected from a subject, the received light including an ambient light component. The ambient light removal current source configured to generate a compensation current indicating the ambient light component in response to a power supply and at least one compensation control signal. The driving transistor is configured to amplify an effective voltage corresponding to the light current and the compensation current. The select transistor configured to output the amplified effective voltage in response to a selection signal, the amplified effective voltage indicating a depth of the subject.