Abstract:
Methods, systems, and devices for wireless communications are described that asynchronous carrier aggregation, including between high frequency band and lower frequency band transmissions. A user equipment (UE) may be configured to monitor transmissions in a first frequency band and a second frequency band. The UE may measure a timing difference between transmissions in the first frequency band and one or more of the transmissions in the second frequency band, and transmit an indication of the timing difference to a base station. The base station may use the timing difference to determine whether the UE is to use asynchronous carrier aggregation. If the base station determines that the UE is to use asynchronous carrier aggregation, the base station may configure the UE to observe at least a minimum amount of delay when conducting uplink signaling via one of the frequency bands.
Abstract:
Methods, systems, and devices for wireless communications are described that provide for partitioning two or more dimensions of an uplink transmission, where different partitions in each partitioned dimension can be used to provide different feedback information. A UE may measure one or more downlink transmissions from a base station (e.g., beam measurements in a beam sweep procedure), and select a partition of one of the partitioned dimensions to indicate feedback related to the measured downlink transmissions. The feedback may indicate, for example, a particular beam that may be used for an active beam pair, beam refinement information, or other feedback. The partitioned dimensions may include one or more of time resource, a frequency resource dimension, a root sequence dimension, a cyclic shift dimension, a time-frequency dimension, or any combination thereof.
Abstract:
Aspects of the disclosure relate to methods and apparatus of wireless communication to support frequency division multiplexing (FDM) of multiple waveforms. The methods and apparatus schedule FDM symbols where the scheduling of the FDM symbols is selectively based on one or more waveform parameters during a time interval when the FDM symbols are transmitted. The FDM symbols are then transmitted over the time interval. Further aspects also include the reception of the FDM symbols in a receiver where the waveform parameters are applied for decoding based on the waveform parameters.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, an apparatus is configured to identify interference information associated with at least one traffic stream. The apparatus is further configured to transmit a message to an access point. The message includes a stream ID associated with the interference information and with the at least one traffic stream. The message includes the interference information, and the interference information includes an offset value and an interval/duration value.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for using a shortened block acknowledgement (BlockAck) frame capable of acknowledging fragments. Such a shortened BlockAck frame may include a bitmap field having a shorter length than that of a basic BlockAck frame in the IEEE 802.11 standard (i.e.,
Abstract:
Techniques are described for wireless communication. A first method includes sensing an indication of first radio access technology (RAT) communications occupying a shared radio frequency spectrum band; and configuring, in response to the sensing, at least one parameter of a second RAT used by a device to contend for access to the band. A second method includes randomly selecting a number from a range of numbers extending between a lower bound and an upper bound; contending for access to a shared radio frequency spectrum band by performing an extended clear channel assessment (ECCA) procedure over a plurality of CCA slots, the plurality of CCA slots including a first number of CCA slots equal to the upper bound; and winning contention for access to the band after determining, while performing the ECCA procedure, that the band is available for a second number of CCA slots equal to the randomly selected number.
Abstract:
This disclosure provides systems, methods and apparatuses for detecting a presence of long training fields (LTFs) in packet extensions of high-efficiency (HE) packets. An apparatus requests a length of packet extensions to be used for a ranging operation. The apparatus receives an HE packet including a packet extension containing a selected number of LTFs based at least in part on the requested packet extension length. The apparatus performs the ranging operation based on a determination that the packet extension contains LTFs. In some aspects, the apparatus detects a presence of LTFs in the packet extension based on a bit provided in the HE packet. In some other aspects, the apparatus detects a presence of LTFs in the packet extension by extracting sequences from the packet extension.
Abstract:
Methods, systems, and devices for wireless communication are described. A device using a first radio access technology (RAT) to communicate over an unlicensed radio frequency spectrum band may identify a communication pattern for a transmission using a second RAT over the unlicensed radio frequency spectrum band. The identification may be based at least in part on signaling received by the device. The device may determine, based at least in part on the communication pattern, a time period for attempting to transmit the unlicensed radio frequency spectrum band using the first RAT.
Abstract:
Disclosed embodiments facilitate wireless channel calibration, ranging, and direction finding, between networked devices. A method on a first station (STA) may comprise: broadcasting, at a first time, a first NDPA frame to a plurality of second STAs. The first NDPA frame may include a first bit indicating that one or more subsequent frames comprise ranging or angular information. After a Short Interval Frame Space (SIFS) time interval from the first time, a second frame may be broadcast. The second frame may be a Null Data Packet (NDP) frame. In response, a plurality of Compressed Beamforming (CBF) frames may be received at the first STA where each CBF frame may be received from a distinct corresponding second STA, and may include Channel Feedback Information field with information pertaining to communication channel between the first STA and the corresponding second STA. The communications may be encoded using Orthogonal Frequency Division Multiple Access.
Abstract:
Described herein are implementations for using a remote control device to control a target device on a network. An exemplary remote control device may generate a data packet comprising a command for controlling the target device and a network address associated with the target device. The remote control device may establish a connection to an infrastructure device on the network, and transmit the data packet to the infrastructure device. The infrastructure device may multicast the data packet to a plurality of IoT devices on the network. An IoT device, of the plurality of IoT devices, may execute the command based on determining, using the network address, that the IoT device is the target device.