Abstract:
A method of inter-cell interference coordination is provided for UE measurements and network access procedure. In a first embodiment, a UE in idle mode performs measurements on received radio signals applying a simplified radio resource restriction for interference coordination. The UE determines the restricted radio resource without receiving explicit measurement configuration. In a second embodiment, during various phases of a network access procedure, the UE indicates its interference status and/or additional interference information to its serving base station to enhance interference coordination. In a third embodiment, the UE in connected mode performs measurements on both interference-protected transmission resources and non-interference-protected transmission resources. The UE measurement results are used for scheduling, radio link monitoring, and/or mobility management to increase radio spectrum efficiency and to improve user experience.
Abstract:
Various schemes are provided to improve SR resource utilization by adapting SR resource allocation to traffic pattern. In a first Scheme, SR resource allocation is configured more accurately. In one example, UE provides assistant information for eNB to determine or adjust SR configuration based on the received assistant information. In a second Scheme, multiple SR periods are configured and adapted to traffic pattern. In one example, eNB configures a set of SR resources with multiple SR periods, and UE applies different SR periods based on predefined events. Unused SR resources could be recycled by eNB for PUSCH data transmission. In a third Scheme, multiple SR allocations are configured and adapted to concerned applications. In one example, eNB configures multiple sets of SR resources adapted to predefined applications, and UE applies SR configurations based on corresponding applications. The additional SR configurations could be activated and/or deactivated.
Abstract:
A method of user equipment (UE) providing speed information to network is provided. The method supports obtaining speed information of the UE, detecting a trigger event and providing the speed information to the network by one or more predefined means. The speed information is taken from the group consisting of a physical speed, a physical speed mapped on a pre-defined speed group, and a virtual speed. The virtual speed comprises a cell change count or a number cells that the UE has requested RRC connection during a certain period. The UE can send the speed information to an eNB via RRC connection establishment, RRC connection re-establishment, a new IE in RRC measure report or a new RRC message.
Abstract:
An enhanced connection recovery upon lost RRC connection due to radio link failure (RLF) or handover failure (HOF) is proposed. A UE first establishes an RRC connection in a source cell in a mobile communication network. Later on, the UE detects a failure event and starts an RRC reestablishment procedure in a target cell to restore the RRC connection. In a first novel aspect, a fast NAS recovery process is applied to reduce the outage time in the target cell. In a second novel aspect, context fetching is used to reduce the outage time in the target cell. In a third novel aspect, a loss-less reestablishment procedure is proposed to reduce data loss during the connection recovery.
Abstract:
A method of offload selection for a UE to select between 3GPP RAT and WLAN cell is provided. The UE receives configuration information that applies to selecting WLAN or 3GPP radio access technology (RAT). The UE determines if the UE may perform WLAN offload by evaluating 3GPP radio access network (RAN) conditions where at least one RAN condition is related to a radio signal strength or a radio signal quality in 3GPP RAT. The UE then determines if there is at least one suitable WLAN cell by evaluating WLAN conditions. The UE also determines if there is candidate traffic for WLAN offload. Finally, the UE steers the determined traffic to WLAN if the UE may perform WLAN offload and if there is at least one suitable WLAN cell. Otherwise, the UE steers the determined traffic to 3GPP RAT.
Abstract:
A method of collecting and providing traffic statistics in a cellular network in accordance is proposed. A UE establishes an RRC connection with a base station. The UE starts to collect traffic statistics that comprises a CDF curve or a PDF diagram for packet inter-arrival time. The UE may receive a measurement configuration from the base station for the traffic statistics collection. The UE then reports a representation of the traffic statistics to the base station for RRC reconfiguration. The UE may also receive a reporting request from the base station that specifies a representation format. The representation format includes one or more probability values at corresponding inter-arrival time points, at least one slope of the CDF, one or more steep events in the CDF, or a PDF range.
Abstract:
A method and apparatus for active location acquisition. An active location acquisition controller is included in a device. The active location acquisition controller can be a circuit or code running on a processor included in the device. A measurement collection request is communicated to the device. The device then determines if and how a location information is to be acquired. If the device determines that the location information is to be acquired, the device enables a location acquisition system to acquire the location information and the device then acquires the requested measurement and stores the requested measurement and the location information in the measurement log. If the device determines that the location information is not to be acquired, the device disables a location acquisition system and does not acquire the location information and the device then acquires the requested measurement and stores the requested measurement in the measurement log.
Abstract:
A method of cell reselection enhancement is proposed. A UE obtains parameters for extended cell reselection (ECR) in a mobile communication network. The UE goes to sleep and then wakes up periodically to monitor a paging channel. The UE either applies a normal paging cycle having a normal paging cycle length or applies a power-saving paging cycle having a very long paging cycle length. The UE performs cell selection if normal paging cycle is applied. The UE performs cell reselection based on the ECR parameters if the power-saving paging cycle is applied, and if the ECR parameters are still valid based on a list of conditions. In one novel aspect, the network provides the ECR parameters for a wider area for the UE such that the UE can still use cell reselection after waking up from a very long sleep to reduce power consumption.
Abstract:
A method of reporting UE measurement state information in RLF report is provided. A UE performs radio measurements of a serving cell and neighbor cells in a mobile communication network. The UE evaluates a measurement reporting criteria and attempts to access the network to deliver a measurement report if the criteria is met. The UE then detects a radio link failure or a handover failure event and reconnects to the network by performing RRC reestablishment or RRC establishment. Finally, the UE transmits a failure event report to the network. The failure event report comprises UE measurement state information corresponds to the failure event. The UE measurement state information helps the network to determine whether to apply corrective actions to mitigate the failure.
Abstract:
A method and apparatus for UE to report preference indication and other UE assistance information to the network is proposed. In a first embodiment, the UE transmits a power preference indication to the network with a prohibition mechanism for optimal DRX configuration. A first level of prohibition is applied if the UE indicates preferring power-saving mode, and a second level of prohibition is applied if the UE indicates preferring normal mode. In a second embodiment, the UE transmits two-level speed information to the network. The two-level speed information is mapped from MSE mobility states based on a mapping rule. In a third example, the UE transmits RRC release assistance information to the network. The assistance information is based on both cell change count and RRC state transition count so that RRC inactivity time can be determined to reduce signaling overhead.