Abstract:
This application relates to an audio assembly that includes both a speaker assembly and a microphone. By mounting both the microphone and the speaker assembly to a unitary audio bracket, space savings can be achieved over a configuration that relies on separate brackets for each component. In some embodiments, an acoustic mesh can be embedded within the audio bracket and extending across an audio channel defined by the audio bracket. The microphone can be aligned with an opening in the audio bracket by an alignment clip that is coupled with the microphone. The alignment clip helps to achieve alignment of a sensor opening of the microphone with a channel defined by the audio bracket.
Abstract:
This application relates to an audio assembly that includes both a speaker assembly and a microphone. By mounting both the microphone and the speaker assembly to a unitary audio bracket, space savings can be achieved over a configuration that relies on separate brackets for each component. In some embodiments, an acoustic mesh can be embedded within the audio bracket and extending across an audio channel defined by the audio bracket. The microphone can be aligned with an opening in the audio bracket by an alignment clip that is coupled with the microphone. The alignment clip helps to achieve alignment of a sensor opening of the microphone with a channel defined by the audio bracket.
Abstract:
An electronic device may have a camera module for acquiring still and video digital images of a subject. A light source such as a light-emitting diode may serve as a flash for the camera module. A shutter may be mounted above the light-emitting diode. When the light-emitting diode is not being used to produce a flash of light for illuminating the subject, the shutter may be closed to block the light-emitting diode from view by a user. During image acquisition operations in which it is desired to illuminate the subject, the shutter may be opened to allow light from the light-emitting diode to exit the electronic device. The electronic device may have a touch screen display with an active region and an inactive region. The camera module and light source may be mounted under a portion of the inactive region of the display. The shutter may include a filter structure.
Abstract:
An electronic device may have electrical components such as sensors. A sensor may have sensor circuitry that gathers sensor data using a conductive structure. The sensor may be a touch sensor that uses the conductive structure to form a capacitive touch sensor electrode or may be a fingerprint sensor that uses the conductive structure with a fingerprint electrode array to handle fingerprint sensor signals. Near field communications circuitry may be included in an electronic device. When operated in a sensor mode, the sensor circuitry may use the conductive structure to gather a fingerprint or other sensor data. When operated in near field communications mode, the near field communications circuitry can use the conductive structure to transmit and receive capacitively coupled or inductively coupled near field communications signals. A fingerprint sensor may have optical structures that communicate with external equipment.
Abstract:
Portable electronic devices are provided. A device may include cover glass with a light mask. The light mask may be microperforated to allow light to pass through the light mask. The microperforations may allow light to pass through the light mask. The devices may include sensors and light emitters that receive and transmit light through the microperforations. The devices may include a variable cantilever spring as part of a button assembly. The spring may be flattened against itself without exceeding its elastic limit. The devices may include display modules. The display module may include structures that block light from leaking out of the module. The structures may include opaque tapes, opaque enclosures for the display module, and other suitable structures.
Abstract:
An electronic device such as a handheld device may have a rectangular housing with a rectangular periphery. A conductive peripheral housing member may run along the rectangular periphery and may surround the rectangular housing. Radio-frequency transceiver circuitry within the electronic device may be coupled to antenna structures for transmitting and receiving radio-frequency signals. The conductive peripheral housing member may form part of the antenna structures. A gap in the conductive peripheral housing member may be filled with dielectric. The conductive peripheral housing member may be configured to form a recess. The recess may have the shape of a rectangle, oval, diamond, or other shape that overlaps and is bisected by the gap. The recess may also have the shape of a groove that extends around the entire periphery of the housing. The dielectric in the recess may include one or more different materials such as clear and opaque polymers.
Abstract:
The described embodiments relate generally to improvements to injection molding equipment. More specifically, concepts for reducing sink and improving cosmetics of portions of injection molded parts in close proximity to gate areas of an injection mold are disclosed. A cold runner system is described in which molding material disposed in a mold cavity is separated from excess molding material in the runner system shortly after the mold is filled at a predetermined packing pressure.
Abstract:
The described embodiments relate generally to improvements to injection molding equipment. More specifically, concepts for reducing sink and improving cosmetics of portions of injection molded parts in close proximity to gate areas of an injection mold are disclosed. A cold runner system is described in which molding material disposed in a mold cavity is separated from excess molding material in the runner system shortly after the mold is filled at a predetermined packing pressure.
Abstract:
Portable electronic devices are provided. A device may include cover glass with a light mask. The light mask may be microperforated to allow light to pass through the light mask. The microperforations may allow light to pass through the light mask. The devices may include sensors and light emitters that receive and transmit light through the microperforations. The devices may include a variable cantilever spring as part of a button assembly. The spring may be flattened against itself without exceeding its elastic limit. The devices may include display modules. The display module may include structures that block light from leaking out of the module. The structures may include opaque tapes, opaque enclosures for the display module, and other suitable structures.