Abstract:
A motor control system includes: a power supply; a converter; an inverter; an alternating-current motor; and a control unit that drives the motor in any one of sinusoidal PWM control, overmodulation control and rectangular wave control through operation control of the converter and the inverter. The control unit starts step-up operation of the converter when a current vector of motor current of the motor on a d-q coordinate plane becomes a current phase corresponding to motor torque, at which a system loss is equal between before and after starting the step-up operation, while the control unit supplies the direct-current voltage, supplied from the power supply, to the inverter without stepping up the direct-current voltage by the converter and performs the rectangular wave control of the motor in a state where the current phase is an optimal current phase.
Abstract:
The main electric power source is connected to a lower-voltage side of a DC/DC converter by a first switch, and an electrical double-layer capacitor and a regulator circuit is connected to a higher-voltage side of the DC/DC converter. In addition, permanent magnets are disposed on a rotor so as to generate a magnetic field that is in a reverse direction to excitation by a field coil inside a claw-shaped magnetic pole portion of the rotor. A power supply control circuit controls opening and closing of the first switch so as to be in an open state when the engine is at rest, and so as to be set to a connected state after the regulator circuit is operated to make the alternator generate electric power to precharge the electrical double-layer capacitor after the engine is started.
Abstract:
A motor control system includes: a power supply; a converter; an inverter; an alternating-current motor; and a control unit that drives the motor in any one of sinusoidal PWM control, overmodulation control and rectangular wave control through operation control of the converter and the inverter. The control unit starts step-up operation of the converter when a current vector of motor current of the motor on a d-q coordinate plane becomes a current phase corresponding to motor torque, at which a system loss is equal between before and after starting the step-up operation, while the control unit supplies the direct-current voltage, supplied from the power supply, to the inverter without stepping up the direct-current voltage by the converter and performs the rectangular wave control of the motor in a state where the current phase is an optimal current phase.
Abstract:
A power converting device is disclosed that can reduce switching loss occurring in a voltage source inverter that drives an AC motor. It is possible to supply DC power to the voltage source inverter from both a voltage source rectifier, which converts AC power from an AC generator into DC power, and a battery. A first switching circuit is inserted between the voltage source rectifier and the AC generator, and the battery is connected to the output side of the voltage source rectifier. A second switching circuit is inserted between the battery and the voltage source inverter. A third switching circuit and a reactor are inserted in series between the input side of the voltage source inverter and the input side of the voltage source rectifier. At least one of an upper arm and a lower arm of the voltage source rectifier can be chopper controlled.
Abstract:
A driving device is electrically connected with an AC power and a brushless DC motor for a fan. The driving device includes a rectifier unit, a filter unit, a switch power conversion unit and a control unit. The rectifier unit receives the AC power and rectifies the AC power. The filter unit, electrically connected with the rectifier unit, filters the rectified AC power and generates a DC power. The switch power conversion unit, electrically connected with the filter unit and the brushless DC motor, receives the DC power and outputs a driving power to the brushless DC motor. The control unit is electrically connected with the switch power conversion unit and the brushless DC motor.
Abstract:
A sensorless motor control device includes a magnetic pole position estimating unit that does not use a sensor to detect a magnetic pole position of a motor having a salient rotor, and overlays a high-frequency current on the motor to estimate the magnetic pole position of the rotor of the motor; and a high-frequency current control unit for changing a magnitude of the high-frequency current based on a magnitude of one of a torque and a current of the motor.
Abstract:
The present invention provides a power supply device for an electric vehicle that allows highly efficient operation of a compressor inverter. A power supply device for motor vehicle 10 has: a main circuit 13 having a power source 11, a DC-DC converter 18, and a main inverter 17 that drives a main motor 12; an auxiliary circuit 15 having an auxiliary inverter 19 that drives an auxiliary motor 14, a first electrical circuit 23 that is connected to the main circuit 13 on a primary side of the DC-DC converter 18, a second electrical circuit 24 that is connected to the main circuit 13 on a secondary side of the DC-DC converter 18, and a connection circuit 30 configured to be capable of selecting one of the first electrical circuit 23 and the second electrical circuit 24 as a path for supplying a direct current voltage to the auxiliary inverter 19; and a control device 16 that controls the connection circuit 30 when the main motor 12 is in power running operation so that switching between the first electrical circuit 23 and the second electrical circuit 24 is performed corresponding to a required voltage of the auxiliary inverter 19.
Abstract:
An ECU activates a shutdown permission signal and provides it to an AND gate when a shutdown signal is inactive. Thus, when an abnormality sensing device does not sense an abnormality, the ECU always keeps the shutdown permission signal active. The AND gate performs logical AND between a signal provided from the abnormality sensing device and the shutdown permission signal to provide the shutdown signal to inverters. When a limp-home run permission signal becomes active while the shutdown signal is active, the ECU inactivates the shutdown permission signal.
Abstract:
A power supply device for a vehicle includes a battery, a power line (power supply line and ground line, a connection unit, a charger that is an electric power supply unit, an accessory load, a voltage sensor and a control device. When the accessory load is operating, the control device sends signals to the connection unit to turn off all of three system main relays. Thereby, battery is electrically disconnected from charger. The control device further produces a power command based on a predetermined target voltage and a voltage detected by the voltage sensor such that the detected voltage attains the target voltage.
Abstract:
The control apparatus controls a controlled variable of the electric rotating machine by manipulating an output voltage of a power converter circuit including switching elements operated at a set modulation index to connect positive and negative terminals of a DC power source to corresponding terminals of the electric rotating machine. The control apparatus includes a prediction section configured to predict the controlled variable for each of a plurality of cases where the power converter circuit is set in a corresponding one of a plurality of predetermined operating states, a manipulation section configured to determine one of the predetermined operating states depending on a result of evaluation by an evaluation function, and set the converter circuit to the determined operating state, and a feedback control section configured to feedback-control the output voltage of the power converter circuit at a target value by manipulating the input parameters of the evaluation function.