Abstract:
Systems and methods for electric machine cooling. The electric machine, in one example, includes a rotor that includes an outer circumferential surface with one or more spiral grooves, a stator that circumferentially surrounds the rotor and includes end windings, and an air passage radially extending from the stator to an air gap between the stator and the rotor. The electric machine further includes a cooling assembly configured to spray a coolant towards the end windings.
Abstract:
An oil recovery structure for cooling a motor includes a rotor connected to a rotary shaft, a stator disposed on the rotor, a housing surrounding the rotor and the stator, and an oil housing disposed on the housing, in which the oil housing includes a first inlet through which the oil is introduced from a space defined on one side of the rotor, a second inlet through which the oil is introduced from a reducer connected to the rotary shaft, and a discharging port discharging the oil inside the oil housing to an oil filter.
Abstract:
A cooling device includes a fan for blowing air to a control board arranged on the downstream side by rotation of a rotator. The cooling device further includes a bypass structure provided so as to avoid the rotator and configured to oil liquid to flow, at least, from the upstream side of the fan to the downstream side of the fan, and a gutter provided on the upstream side of the fan to lead the oil liquid to the bypass structure.
Abstract:
A liquid cooled generator is provided having a rotor having a central core and a main stator winding wrapped around the central core. A first laminate at a first end of the central core is provided having a first orifice defining a first diameter and a second laminate at a second end of the central core is provided having a second orifice defining a second diameter that is the same as the first diameter. A flow line passes through the central core and is configured to extend from the first laminate to the second laminate, the flow line defining a third diameter that is larger than the first and second diameters. The first and second diameters are configured such that air flow is permitted to pass through the first and second laminates and to restrict the flow of a liquid through the first and second laminates.
Abstract:
An electric power tool capable of suppressing damage to a fan housed in a housing to cool a motor due to foreign matter without increasing the number of parts. An impact driver includes a motor, a centrifugal fan attached to an output shaft of the motor to cool the motor, an annular air collecting member disposed between the motor and the centrifugal fan to collect cooling air by the centrifugal fan, a housing that houses the motor, the centrifugal fan, and the air collecting member, and ventilation windows formed in the housing to communicate between the inside and the outside of the housing on the outer side of the centrifugal fan. The air collecting member is provided with wall bodies positioned on the inner side of the ventilation windows.
Abstract:
The electric machine has a casing housing a stator and a rotor and containing a gas, and a dryer for the gas. The dryer is connected to the casing. The dryer includes a separation group, for separating humidity from the gas, a water accumulator, for at least temporally accumulating water discharged from the separation group, at least a detector for the water contained in the water accumulator.
Abstract:
A centrifugal multiblade blower includes: an electric motor; and an impeller blowing off air outward in a radial direction by being rotated by the electric motor. A main plate of the impeller has an uneven part on one surface adjacent to the electric motor in a thickness direction of the main plate. The one surface is in contact with air passing through inside of the electric motor. A surface shape of the uneven part is formed in manner that, among a whole surface of the uneven part, a total surface area of a surface facing inward in a radial direction of the motor is larger than an imaginary smooth surface on which the surface shape of the uneven part is defined to be a smooth surface without the uneven part.
Abstract:
A cooling circuit for an electric motor for a construction machine includes a circulation line that includes a shaft-side line disposed in a rotor shaft of the electric motor, a pump that supplies cooling fluid to the circulation line, a first filter disposed between the pump and the shaft-side line in the circulation line, a first bypass line that bypasses the first filter so as to connect an upstream side and a downstream side of the first filter, and a first relief valve disposed in the first bypass line.
Abstract:
A rotary electric machine includes a stator around which coil conductor wires for a plurality of phases are wound, a housing that contains the stator, and a terminal block that is mounted on the housing and connects end portions of the coil conductor wires for the respective phases led from the stator to corresponding external power supply lines. A coolant is supplied to the stator in the housing. The terminal block includes: a plurality of relay conductors, each relay conductor having one end connected to an external power supply line and the other end connected to an end portion of the coil conductor wires for the respective phases, and a terminal block body that is made of an insulating material and holds the plurality of relay conductors.
Abstract:
A brushed rotatory device (10) includes a stator, a rotor (14), an impeller (70), and a chamber (48) accommodating the commutator (16) and brushes (52) to contain debris from consumed brushes. The impeller causes air flow to dissipate heat generated by the rotatory device and may further carry the consumed brush debris away. The rotatory device includes flow channel(s) (72) which communicates with the impeller exhaust and accommodates absorbent or filtering materials (88) to trap the debris in the air flow. The commutation area may be double contained by using flange(s) (202) or wall(s) (42) to trap or confine a greater part of the debris in a localized region or to reduce noise from the rotatory device operations.