Abstract:
This invention discloses a device comprising multiple functional layers with multiple energization elements formed on substrates, wherein at least one functional layer comprises an electrical energy source. In some embodiments, the present invention includes a component for incorporation into ophthalmic lenses that has been formed by the stacking of multiple functionalized layers.
Abstract:
The present invention provides methods and apparatus capable of routine placement and replacement of fabricator tools in a designated tool location. The tool location can be selected from multiple tool locations arranged in a matrix with horizontal and vertical designations. The operation may be fully automated. In another aspect, the invention describes Cleanspace fabricators which use devices to routinely remove and place tooling.
Abstract:
The present invention relates generally to an intraocular lens system controlled with a processor, including a liquid meniscus lens and supporting electronics. Embodiments may include intraocular lens systems of various shapes and sizes, liquid meniscus lens components of various shapes and sizes, variations in supporting electronics with corresponding variations in lens function.
Abstract:
This invention discloses various designs for rings and ring segments that make up functionalized layers in a functional layer insert, for incorporation into an ophthalmic lens. The layer insert which can include substrate layers that are intact full rings, segmented rings or a combination of both. Segmented rings may include Arc-Matched and Non Arc-Matched arcuate segments.
Abstract:
The present invention provides various methods for forming cleanspace fabricators by retrofitting a structure of an existing cleanroom based fabricator. In some embodiments, a cleanspace fabricator is formed within a region of a cleanroom fabricator which is not transformed.
Abstract:
This invention discloses a device comprising multiple functional layers with multiple energization elements formed on substrates, wherein at least one functional layer comprises an electrical energy source. In some embodiments, the present invention includes a component for incorporation into ophthalmic lenses that has been formed by the stacking of multiple functionalized layers.
Abstract:
The present invention provides various aspects of support for a fabrication facility capable of routine placement and replacement of processing tools in at least a vertical dimension relative to each other.
Abstract:
A computerized system for a fabrication facility capable of routine placement and replacement of processing tools in at least a vertical dimension relative to each other.
Abstract:
This present invention provides apparatus and methods for the activation of an energized ophthalmic lens. In some embodiments, the present invention provides for activation and deactivation of one or more components via wireless communication with an activation unit external to the ophthalmic lens. In some embodiments, an energized ophthalmic lens contains components which detect external signals, process the detected signal and activate components that change optical characteristics via the control of electrical energy.
Abstract:
This invention discloses methods and apparatus for providing a variable optic insert into an ophthalmic lens. An energy source is capable of powering the variable optic insert included within the ophthalmic lens. In some embodiments, an ophthalmic lens is cast molded from a silicone hydrogel.