FILTER COEFFICIENT CONFIGURATION IN NEW RADIO SYSTEMS

    公开(公告)号:US20200007195A1

    公开(公告)日:2020-01-02

    申请号:US16407126

    申请日:2019-05-08

    Inventor: Candy Yiu

    Abstract: Aspects of filtering coefficient configuration operations are described. Some aspects include a user equipment (UE) decoding a measurement configuration information element (IE) including a measurement quantity parameter, a reference signal (RS)-type filter configuration and at least one filter coefficient. In some aspects, the UE filters at least one of a cell measurement result and a beam measurement result, according to the measurement configuration IE. If the measurement quantity parameter indicates the cell measurement quantity, the UE can filter the cell measurement result according to the RS type filter configuration and the filter coefficient to determine a measurement evaluation input for a measurement reporting operation. If the measurement quantity parameter indicates the beam measurement quantity, the UE can filter the beam measurement result according to the RS type filter configuration and the filter coefficient to determine a beam measurement selection input for a beam measurement selection operation.

    Systems, methods and devices for using s-Measure with new radio

    公开(公告)号:US10447370B2

    公开(公告)日:2019-10-15

    申请号:US16173586

    申请日:2018-10-29

    Abstract: A new radio (NR) capable user equipment (UE) to determine whether to skip cellular measurements using s-Measure configuration based on measurements of a synchronization signal (SS) block (SSB) and/or Channel State Information Reference Signal (CSI-RS) using an s-Measure configuration. For example, an s-Measure configuration can include a reference signal received power (RSRP) value and an indicator whether to apply the value to an NR SS block or a CSI-RS. If the value meets or exceeds the measurement for the indicated signal measurement, the s-Measure is satisfied. For example, in an embodiment, the network configures a single s-Measure configuration (e.g., either an NR SS s-Measure configuration or a CSI-RS s-Measure configuration), which when satisfied the UE does not perform further measurements.

    Load balancing schemes for idle mode user equipment

    公开(公告)号:US10390261B2

    公开(公告)日:2019-08-20

    申请号:US15631947

    申请日:2017-06-23

    Abstract: A user equipment device (UE) comprises physical layer circuitry configured to transmit and receive radio frequency electrical signals with one or more nodes of a radio access network; and processing circuitry. The processing circuitry is configured to receive system information via the network, wherein the system information indicates cell specific priority and frequency priority; identify candidate cells that have a cell specific priority that is higher than a cell priority of the current serving cell, have a frequency priority that is higher than a frequency priority of a current serving frequency, and satisfy a cell suitability criterion; and determine a candidate cell from the identified candidate cells to replace the current serving cell for communicating with the network.

    DUAL CONNECTIVITY TECHNIQUES FOR NR (NEW RADIO)

    公开(公告)号:US20190090151A1

    公开(公告)日:2019-03-21

    申请号:US16179421

    申请日:2018-11-02

    Abstract: Techniques discussed herein can facilitate measurement gap configuration and/or determination of activation or deactivation delays for NR (New Radio) UEs (User Equipments). A first set of aspects can involve coordination of measurement gap configuration for a UE between a MN (Master Node) and SN (Secondary Node). A second set of aspects can involve estimation of timing for activation and/or deactivation of SCell(s) (Secondary Cell(s)) in DC (Dual Connectivity) scenarios. Various embodiments can employ techniques of the first set of aspects and/or the second set of aspects.

    Increased carrier monitoring
    107.
    发明授权

    公开(公告)号:US10237680B2

    公开(公告)日:2019-03-19

    申请号:US15512822

    申请日:2015-06-30

    Abstract: Technology described herein provides carrier-monitoring (CM) signaling approaches that can be used by networks and/or mobile devices. An evolved Node B (eNB) can send an IncMon-support message indicating whether a network supports the increased-number-of-frequencies-to-monitor (IncMon) feature. A UE can apply a default CM configuration if the UE does not receive an IncMon-support message from the eNB. The eNB can use dedicated signaling or broadcast signaling to inform a UE of a default CM configuration or one or more adopted CM configurations that are used in the network. The eNB can also send a list of carriers that are to be monitored to the UE. The UE can also send UE-capability information to the eNB, such as a default CM configuration, an adopted CM configuration, or configurable configurations in different radio access technologies (RATs) supported by the UE.

    FILTER COEFFICIENT CONFIGURATION IN NEW RADIO SYSTEMS

    公开(公告)号:US20190058508A1

    公开(公告)日:2019-02-21

    申请号:US16162541

    申请日:2018-10-17

    Inventor: Candy Yiu

    Abstract: Aspects of filtering coefficient configuration operations are described. Some aspects include a user equipment (UE) decoding a measurement configuration information element (IE) including a measurement quantity parameter, a reference signal (RS)-type filter configuration and at least one filter coefficient. In some aspects, the UE filters at least one of a cell measurement result and a beam measurement result, according to the measurement configuration IE. If the measurement quantity parameter indicates the cell measurement quantity, the UE can filter the cell measurement result according to the RS type filter configuration and the filter coefficient to determine a measurement evaluation input for a measurement reporting operation. If the measurement quantity parameter indicates the beam measurement quantity, the UE can filter the beam measurement result according to the RS type filter configuration and the filter coefficient to determine a beam measurement selection input for a beam measurement selection operation.

    Device and method for modifying cell measurements based on device mobility

    公开(公告)号:US10080153B2

    公开(公告)日:2018-09-18

    申请号:US15119086

    申请日:2015-03-13

    Abstract: User Equipment (UE), computer readable media, and methods to modify communication channel measurement timing based on a mobility of the UE are disclosed. The UE may include circuitry configured to determine a plurality of signals from one or more cells, determine a first value for a first performance metric associated with a first cell of the one or more cells, wherein the first value is determined from a first measurement, select the first cell for a first communication based on the first value, determine first location information associated with the UE, determine, following the first measurement and using the first location information, that the UE is stationary, and delay, in response to the determination that the UE is stationary, a second measurement of the first performance metric. In various alternate embodiments, different measurement types may be used for mobility and channel quality determinations. In further embodiments, only measurements for unused channels may be delayed.

Patent Agency Ranking