Abstract:
Headset connector systems and headset engaging connector systems are provided. Headset connector systems can include two or more headset connector contact regions. Headset engaging connector systems can include two or more headset engaging contact regions to provide at least one of power and data. The headset connector system or the headset engaging connector system can include switching circuitry electrically coupled to the respective contact regions. The switching circuitry can be operative to determine an interface orientation between the headset connector contact regions and the headset engaging contact regions. The switching circuitry can also be operative to selectively route received signals based on the determined interface orientation. At least a portion of the headset connector system or the headset engaging connector system can be magnetically attractive.
Abstract:
Method and device relate to improved sensor configurations in a user device are disclosed. A device implements the improved sensor configurations includes a switch configured to detect a force applied by a user, one or more touch sensors configured to detect an angular position of the user input which are peripherally located relative to the switch, and a processor configured to generate a signal for performing a task selected from a plurality of predefined tasks in accordance with the force and the angular position of the user input.
Abstract:
An input device that includes both a movement detector, such as mechanical switch, and positional indicator, such as touch pad touch screen, and/or touch sensing housing is disclosed. These two input devices can be used substantially simultaneously to provide a command to the device. In this manner, different commands can be associated with depressing a moveable member in different areas and a single moveable member can perform like several buttons.
Abstract:
A glass sealing system includes a glass portion and a first adhesive layer disposed along an exterior surface of the glass portion. The glass sealing system also includes a cover with a first surface secured to the first adhesive layer and a second surface opposing the first surface. The glass sealing system includes a second adhesive layer disposed on the second surface and configured to secure the cover to a support structure. The cover obscures the second adhesive layer from view of a user looking through the glass portion toward the support structure.
Abstract:
A glass fastening system includes a fastener having a first portion embedded along an interlayer within a laminated glass portion and a second portion extending outward from an exterior surface of the laminated glass portion for use in attachment to a support structure. Another glass fastening system includes a fastener having a first portion adhered to an exterior surface of a glass pane and a second portion extending from the first portion away from the exterior surface for use in attachment to a support structure. A glass sealing system includes a pair of glass panes having offset edge portions and a seal including an overmold portion capturing the edge portions. Another glass sealing system includes a seal having an internal portion embedded within a laminated glass portion and an external portion extending along an exterior surface of the laminated glass portion.
Abstract:
An input device that includes both a movement detector, such as mechanical switch, and positional indicator, such as touch pad touch screen, and/or touch sensing housing is disclosed. These two input devices can be used substantially simultaneously to provide a command to the device. In this manner, different commands can be associated with depressing a moveable member in different areas and a single moveable member can perform like several buttons.
Abstract:
Embodiments relates to a hook side fastener having hooks and a loop side fastener having loops. The hooks and/or loops are made of bulk solidifying amorphous metal alloy. Other embodiments relate to methods of making and using the hook side and loop side fasteners.
Abstract:
Provided in one embodiment is a method of selective microstructural transformation, comprising: providing a part comprising a bulk amorphous alloy; heating selectively a portion of the part to a first temperature such that at least some of the portion is transformed into a crystalline phase; and processing the transformed portion.
Abstract:
An accessory may be provided with a button controller having a microphone and switches. Plastic structures for the accessory may be formed by injection molding. Plastic structures may be molded around switch terminals. Switches may be formed using dome switch members and the switch terminals. A printed circuit with components may be mounted in the plastic structures. Recesses in the structures may be configured to receive the dome switch members, components on the printed circuit board, and wires in a cable. A backplate may be used to cover the printed circuit. A layer of plastic may be molded over the backplate to seal an interface created by the backplate. Cable strain relief structures may be molded into the layer of plastic. A lip on the strain relief structures may prevent particles from entering the controller.
Abstract:
Various components of an electronic device housing and methods for their assembly are disclosed. The housing can be formed by assembling and connecting two or more different sections together. The sections of the housing may be coupled together using one or more coupling members. The coupling members may be formed using a two-shot molding process in which the first shot forms a structural portion of the coupling members, and the second shot forms cosmetic portions of the coupling members.