Abstract:
Methods and devices are disclosed for dynamically fragmenting packets transmitted in a communications network. Fragments are generated by splitting a packet based on a value of a fragment size parameter. A first fragment is sent to a receiving node. As the sending node, a transmission success parameter is determined that indicates whether the first fragment was successfully received. Based on the value of the transmission success parameter, a link quality parameter value representing a chance a second fragment having the same size as the first fragment will be successfully received by the receiving node is updated. The sending node compares the value of the link quality parameter and a value of a quality threshold parameter and changes the value of the fragment size parameter based on a result of the comparison.
Abstract:
Meter nodes in a power line carrier (PLC) network may reliably communicate with an access point by alternate routes using additional media where available. A utility network may include one or more subnetworks. Each subnetwork may include one or more meter nodes and an access point configured to communicate with the meter nodes using PLC. Meter nodes operate as relays for other meter nodes to communicate with the access point. Some or all meter nodes may be configured to communicate using a power line carrier communications link and another communications link. The network may also include a node external to the subnetwork, e.g., a utility server. The access point may be configured to communicate with the node external to the subnetwork in addition to the meter nodes.
Abstract:
A network interface device includes a transceiver capable of connecting a utility meter to a wireless network, and a visual indicator capable of displaying a status of a connection between the utility meter and the wireless network. The visual indicator can be an LED, whose display state indicates the status of network connectivity. Alternatively, the visual indicator can be an integrated digital display of the meter that is typically used to indicate a metering parameter, such as total consumption or rate of consumption.
Abstract:
An electronic electric meter for use in a networked automatic meter reading environment. The meter includes a meter microcontroller, a measurement microcontroller, a communication microcontroller and spread spectrum processor, and a plurality of other communication interface modules for communicating commodity utilization and power quality data to a utility. The meter measures electricity usage and monitors power quality parameters for transmission to the utility over a spread spectrum local area network (LAN) to a remotely located gateway node. The gateway node transmits this data to the utility over a commercially available fixed wide area network (WAN). The meter also provides direct communication to the utility over a commercially available network interface that plugs into the meter's backplane or bus system, bypassing the local area network communication link and gateway node.
Abstract:
A method and/or a system of a secure network bootstrap of devices in an automatic meter reading network is disclosed. A method of a network interface card in an automatic meter reading network includes generating a derived security key based on a secret key embedded in a network interface card and a provided security key of a device management server of the automatic meter reading network. The method also includes communicating the derived security key and a challenge data of a challenge-response pair of the device management server to a metering device and generating a response data through processing a reply data of the metering device reacting to the challenge data. In addition, the method includes communicating the response data to the device management server to authenticate the network interface card and/or the metering device.
Abstract:
An electronic electric meter for use in a networked automatic meter reading environment. The electric meter retrofits into existing meter sockets and is available for new meter installations for both single phase and three phase electric power connections. The meter utilizes an all electronic design including a meter microcontroller, a measurement microcontroller, a communication microcontroller and spread spectrum processor, and a plurality of other communication interface modules for communicating commodity utilization and power quality data to a utility. The electric meter utilizes a modular design which allows the interface modules to be changed depending upon the desired communication network interface. The meter measures electricity usage and monitors power quality parameters for transmission to the utility over a two-way 900 MHz spread spectrum local area network (LAN) to a remotely located gateway node. The gateway node transmits this data to the utility over a commercially available fixed wide area network (WAN). The meter also provides direct communication to the utility over a commercially available network interface that plugs into the meter's backplane or bus system bypassing the local area network communication link and gateway node.
Abstract:
An electronic electric meter including a transducer for measuring commodity utilization; a microcontroller coupled to the transducer for interpreting the commodity utilization data; and a two-way wireless transceiver coupled to the microcontroller for transmitting commodity utilization data from the meter to a remote gateway node, and for receiving data requests from the remove gateway mode.
Abstract:
Nodes within a wireless mesh network are configured to monitor time series data associated with a utility network, including voltage fluctuations, current levels, temperature data, humidity measurements, and other observable physical quantities. The nodes execute stream functions to process the recorded time series data and generate data streams. The node is configured to transmit generated data streams to neighboring nodes. A neighboring node may execute other stream functions to process the received data stream(s), thereby generating additional data streams. A server coupled to the wireless mesh network collects and processes the data streams to identify events occurring within the network.
Abstract:
A communication device detects whether anomalous events occur with respect to at least one node in a utility network. The communication device has recorded therein threshold operating information and situational operating information. The threshold operating information includes data indicative of configured acceptable operating parameters of nodes in the network based on respective locational information of the nodes. The situational information includes data indicative of configured operation data expected to be received from nodes in the network during a predetermined time period, based on a condition and/or event occurring during the time period. The communication device receives operation data from nodes in the network, and determines whether the operation data from a node constitutes an anomalous event based on a comparison of the received operation data with (i) the threshold operating information defined for the node and (ii) the situational information. The communication device outputs notification of any determined anomalous event.
Abstract:
Methods and systems for implementing a rotation sensing device are provided. The rotation sensing device may include a magnet, a magnetic field sensor located in a fixed position relative to the magnet, the magnetic field sensor configured to sense a magnetic field of the magnet, and a flux conductor configured to alter the magnetic field of the magnet, wherein the flux conductor is mounted to a rotatable element. The magnet may be mounted in a fixed position relative to the flux conductor, and the magnetic field sensor may be configured to generate a signal based on a sensed strength of the magnetic field in accordance with rotation of the flux conductor.