Abstract:
There is provided an optical waveguide element and a method for manufacturing an optical waveguide element that make it possible, while reducing the cost of manufacturing the optical waveguide element, to reliably eliminate stray light that affects primary signal light.The optical waveguide element of the present invention includes a silicon layer and silicon-dioxide layers placed above and below the silicon layer, in which the silicon layer includes a ridge optical waveguide and an impurity-implanted region placed at not less than a predetermined distance from the ridge optical waveguide.
Abstract:
A compact polarization beam splitter is formed by cascading two stages of three restricted MMIs. Each MIMI is configured to set ultra compact width and length for a rectangular waveguide body to limit no more than 4 modes therein working as a polarization beam splitter in a 50 nm wavelength window around 1300 nm. Each MMI is further configured to couple an input at a first end and a TE bar output and a TM cross output at a second end of the rectangular waveguide body. The locations of the input/output waveguide ports are designated to be a distance of ⅙ of the width away from a middle line from the first end to the second end. Two second-stage MMIs have their inputs coupled to the TE bar output and the TM cross output of the first-stage MMI and provide a second-stage TE bar output and a second-stage TM cross output, respectively.
Abstract:
An optical coupling apparatus for coupling an optical fiber to a photonic chip is described. The apparatus includes a collimating microlens for collimating light from the optical fiber; a polarization splitting beam displacer for separating the light collimated by the collimating microlens into orthogonally polarized X and Y component beams; at least one focusing microlens for directing the X and Y component beams separately onto the photonic chip; and first and second surface grating couplers (SGCs) orthogonally disposed on the photonic chip and configured for operation in a same polarization state, for coupling the X and Y component beams, respectively, to the photonic chip.
Abstract:
A polarization control device and a polarization control method, wherein the polarization control device includes a polarization beam splitting apparatus, a first phase shifter, a beam combiner, a first waveguide, a second waveguide, and a third waveguide, where the polarization beam splitting apparatus is configured to split input light into two beams of transverse electric (TE) mode light or two beams of transverse magnetic (TM) mode light, where the first phase shifter is configured to adjust a phase of light that is input to the first phase shifter, and the beam combiner is configured to adjust a split ratio of the beam combiner, and combine the two beams of TE mode light or the two beams of TM mode light that is input from a first input port and a second input port of the beam combiner, into one beam of TE mode light or one beam of TM mode light.
Abstract:
The present invention provides a polarization beam combiner/splitter, a polarization beam combining/splitting structure, a light mixer, an optical modulator module, and a method for manufacturing a polarization beam combiner/splitter with suitable polarization beam combining/splitting characteristics. In the polarization beam combiner/splitter, a polarization beam combining/splitting film is placed on a substrate and allows TE light to pass through and causes TM light to branch off. A first optical waveguide is formed on the substrate with an end surface facing a first surface of the polarization beam combining/splitting film and with a waveguide direction coinciding with a propagation direction of the TE light. A second optical waveguide is formed on the substrate with an end surface facing a second surface of the polarization beam combining/splitting film and with a waveguide direction coinciding with a propagation direction of the TM light.
Abstract:
A method and system for integrated power combiners are disclosed and may include a chip comprising a polarization controller, the polarization controller comprising an input optical waveguide, optical couplers, and a polarization-splitting grating coupler. The chip may be operable to: generate two output signals from a first optical coupler that receives an input signal from said input optical waveguide, phase modulate one or both of the two output signals to configure a phase offset between the two generated output signals before communicating signals with the phase offset to a second optical coupler. One or both optical signals generated by said second optical coupler may be phase modulated to configure a phase offset between signals communicated to the polarization-splitting grating coupler; and an optical signal of a desired polarization may be launched into an optical fiber via the polarization-splitting grating coupler by combining the signals communicated to the polarization-splitting grating coupler.
Abstract:
According to embodiments of the present invention, an optical coupling device is provided. The optical coupling device includes a substrate, and a grating arrangement including a plurality of grating elements, the plurality of grating elements being defined on one surface of the substrate, wherein the plurality of grating elements are arranged to have a first period along a first direction, and a second period along a second direction orthogonal to the first direction, the first period being different from the second period. According to further embodiments of the present invention, a photonic integrated circuit and a method of forming an optical coupling device are also provided.
Abstract:
An interferometer module for quantum processing is described including a substrate having two or more input ports and two or more output ports; multiple photonic pathways embedded in the substrate for conveying photons from the two or more input ports and the two or more output ports; and one or more partial beam splitters embedded in the substrate in a photonic pathway for generating spatial and polarization entanglement.
Abstract:
An optical system may include a polarization beam splitter having an input that receives multiple optical signals, a first output and a second output. The first output may provide components of the multiple optical signals having a first polarization. The second output may provide components of the multiple optical signals having a second polarization. The optical system may include a rotator having an input that receives the components to rotate the first polarization such that each of the components has the second polarization, and an output to supply components as rotated components.The optical system may also include an optical circuit including a substrate. The rotator may be separate from the substrate. The optical circuit may include an optical demultiplexer circuit provided on the substrate to receive the rotated components and the components.
Abstract:
A waveguide device that includes a first waveguide, a second waveguide and a transition region. The first waveguide has a first height and the second waveguide has a second height different from the first height. The transition region is between the first waveguide and the second waveguide and includes an asymmetrical taper of the first waveguide.