摘要:
A method of making a three dimensional electrode having an active material layered between a current collector and a separator includes growing nanotubes at predetermined points on a first sheet of electron directing material, wherein the electron directing material is highly conductive and chemically inert; aligning the nanotubes in a direction perpendicular to the first sheet; functionalizing a distal end of each nanotube; bonding a second sheet of electron directing material to the functionalized distal end of each nanotube; depositing magnetic particles along the second sheet; applying a magnetic field to the magnetic particles to rotate the first sheet, the second sheet and the nanotubes ninety degrees to form an electron directing structure; and attaching the electron directing structure on a surface of the current collector with a polymer binder. The electron directing structure is configured to direct electron flow along a layered direction of the three dimensional electrode.
摘要:
Provided is a lithium-sulfur secondary battery capable of suppressing diffusion of a polysulfide eluted into an electrolyte, into a negative electrode and capable of suppressing lowering of a charge-discharge efficiency. In a lithium-sulfur secondary battery (B) of the invention, having a positive electrode (P) including a positive electrode active material containing sulfur, a negative electrode (N) including a negative electrode active material containing lithium, and a separator (5) which is disposed between the positive electrode and the negative electrode and which allows a lithium ion of an electrolyte (L) to pass therethrough, a cation-exchange membrane (CE) is formed on one of a positive electrode-side surface of the separator and a negative electrode-side surface thereof.
摘要:
A method for fabricating a paper lithium ion cell including depositing a first lithium-metal oxide composition onto a first electrically conducting microfiber paper substrate to define a cathode, depositing a second, different lithium-metal oxide composition onto a second electrically conducting coated microfiber paper substrate to define an anode, separating the cathode and the anode with a barrier material, infusing the cathode and the anode with electrolytes, and encapsulating the anode, the cathode, and the barrier material in a housing.
摘要:
Provided is a sheet type separation layer-electrode composite including a current collector, an electrode active material layer formed on one surface of the current collector, and a porous first support layer formed on an upper surface of the electrode active material layer, and a secondary battery and a cable type secondary battery including the same.
摘要:
The invention relates to electrochemical electrodes containing branched nanostructures having increased surface area and flexibility. These branched nanostructures allow for higher anode density, resulting in the creation of smaller, longer-lasting, more efficient batteries which require less area for the same charging capacity. Also disclosed are methods for creating said branched nanostructures and electrodes.
摘要:
There are provided a negative electrode for a nonaqueous electrolyte secondary battery having excellent initial efficiency and good moldability of pillar portions included in a negative electrode mixture layer, and a nonaqueous electrolyte secondary battery. A negative electrode (20) for a nonaqueous electrolyte secondary battery according to one aspect of the present invention includes a negative electrode current collector (21) and a negative electrode mixture layer (22) formed on the negative electrode current collector (21) and containing a binder and a negative electrode active material particle that forms an alloy with lithium. The negative electrode mixture layer (22) includes a base portion (22a) near the negative electrode current collector (21) and pillar portions (22b) formed on the base portion (21a). The binder contains a polyimide resin. The polyimide resin has an average molecular weight of 60000 or more.
摘要:
An anode, an anode current collector, an anode active material and a battery using the anode are provided. The anode includes the anode current collector and the anode active material. The anode current collector has a projection. The anode active material layer is formed via at least one of a vapor deposition method, a liquid-phase deposition method, a sintering method and the like.
摘要:
The present invention relates to an anode for a cable-type secondary battery, more specifically an anode for a cable-type secondary battery, comprising a spiral electrode consisting of at least two wire-type electrodes which are spirally twisted with each other, each of the wire-type electrodes comprising a wire-type current collector, an anode active material layer formed by coating on the outer surface of the wire-type current collector, and a polymer resin layer formed by coating on the outer surface of the anode active material layer; and a cable-type secondary battery comprising the anode. The anode for a cable-type secondary battery according to the present invention comprises a polymer resin layer formed by coating on the outer surface of an anode active material layer, thereby preventing the release of the anode active material layer from a wire-type current collector and eventually preventing the deterioration of battery performances.
摘要:
A sheet-form electrode for a secondary battery includes a current collector; an electrode active material layer formed on one surface of the current collector; a porous organic-inorganic layer formed on the electrode active material layer and including inorganic particles and a polymer binder; and a first porous supporting layer formed on the porous organic-inorganic layer. The sheet-form electrode for a secondary battery has supporting layers on at least one surface thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
摘要:
A secondary battery includes an electrode assembly having a relatively large capacity due to reducing a width of an uncoated portion and increasing a width of a coated portion by improving welding strength through a combination of ultrasonic welding and laser welding, and a manufacturing method thereof. The manufacturing method of the secondary battery includes preparing at least one electrode assembly including an uncoated portion, provisionally welding the uncoated portion by ultrasonic welding, coupling a current collector having an elastic property to the provisionally welded uncoated portion, and welding the uncoated portion and the current collector by laser welding.