摘要:
An optical to radio frequency detector comprising an optical guide (11 to 14) for receiving two optical signal components having frequencies that differ by an amount corresponding to a radio frequency, and a radio signal guide (15, 16) coupled with an interaction zone (14) of the optical guide for propagating a radio signal from the interaction zone at the radio frequency. the interaction zone (14) of the optical guide comprises an interaction material presenting a second-order non-linear optical polarisation characteristic to the propagatio of the optical signal components, and the radio signal guide (15,16) is in travelling-wave coupling with the interaction zone. the interaction material includes electrically orientated diazobenzene. The radio signal guide (15,16) comprises an electrically conductive strip (15) juxtaposed with and extending along the interaction zone (14) on one side thereof and an electrically conductive ground plane (16) juxtaposed with and extending along the interaction zone (14) on an opposite side thereof.
摘要:
A method of manufacturing a waveguide type optical element wherein Zn is selectively diffused on a light absorption layer using an undoped InP layer. Since an impurity diffusion area is made on the light absorption layer under a ridge part, a depletion layer becomes thin in a thickness direction and an electric field can strongly be applied. Thereby, an extinction ratio characteristic of a device can be improved.
摘要:
An optical waveguide is formed on a substrate and includes a curved ridge structure, a curved optical path, and a buffer layer. The curved ridge structure is formed on the substrate so as to have a curvature in a longitudinal direction of the curved ridge structure. The curved optical path is formed along the curved ridge structure. The buffer layer covers a side of the ridge structure and has a lower refractive index than a refractive index of the substrate.
摘要:
An optical waveguide device includes a waveguide layer that converts a wavelength of incident light and emits converted light. In the waveguide layer, a ridge waveguide and slab waveguides are provided, the slab waveguides being formed on both sides of the ridge waveguide with recess portions intervening therebetween. The waveguide layer satisfies a multi-mode condition for the incident light, and light propagating through the ridge waveguide is in a single mode.
摘要:
A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (
摘要:
A method for fabricating a multi-layer laterally-confined dispersion-engineered optical waveguide which may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (
摘要:
A waveguide type optical element wherein Zn is selectively diffused on a light absorption layer using an undoped InP layer. Since an impurity diffusion area is made on the light absorption layer under a ridge part, a depletion layer becomes thin in a thickness direction and an electric field can strongly be applied. Thereby, an extinction ratio characteristic of a device can be improved.
摘要:
An electro-optic device includes a semiconducting layer in which is formed a waveguide, a modulator formed across the waveguide comprising a p-doped region to one side and an n-doped region to the other side of the waveguide, wherein at least one of the doped regions extends from the base of a recess formed in the semiconducting layer. In this way, the doped regions can extend further into the semiconducting layer and further hinder escape of charge carriers without the need to increase the diffusion distance of the dopant and incur an additional thermal burden on the device. In an SOI device, the doped region can extend to the insulating layer. Ideally, both the p and n-doped regions extend from the base of a recess, but this may be unnecessary in some designs. Insulating layers can be used to ensure that dopant extends from the base of the recess only, giving a more clearly defined doped region. The (or each) recess can have non-vertical sides, such as are formed by v-groove etches, A combination of a vertical sidewall at the base of the recess and a non-vertical sidewall at the opening could be used.
摘要:
Machining of crystalline lithium niobate is carried out utilizing a laser having a beam with a wavelength near the absorption edge of lithium niobate. The laser beam is provided in pulses of short duration and at a repetition rate selected to ablate the surface of the lithium niobate without damaging the bulk material. Translation of the laser beam and the substrate with respect to each other can be carried out to define a trench of a desired geometry in the lithium niobate.
摘要:
A semiconductor-based gain optical phase-shifting device, method and apparatus. In one aspect of the present invention, an apparatus according to an embodiment of the present invention includes a semiconductor substrate through which an optical beam is to be directed along an optical path through the semiconductor substrate. A plurality of floating charge modulated regions are disposed along the optical path. A phase of the optical beam is responsive to a charge concentration in each of the plurality of floating charge modulated regions. A plurality of tunneling insulation layers are disposed between each of the plurality of floating charge modulated regions and the semiconductor substrate. A plurality of control nodes are disposed proximate to the plurality of floating charge modulated regions. Each of the control nodes control the charge concentration in a respective one of the plurality of floating charge modulated regions. A plurality of blocking insulation layers disposed between each of the plurality of control nodes and the plurality of floating charge modulated regions.