Abstract:
An absolute encoder having a coder in which an incremental pattern and an absolute pattern are arranged in parallel and a detector including sensors for detecting the incremental pattern and the absolute pattern respectively. The absolute encoder comprises a discriminater to discriminate a relative phase position of the coder and the detector in one pitch of the incremental pattern from an output of the sensor for detecting the incremental pattern, and a signal generator to generate a synchronizing signal when a discriminated phase position coincides with a predetemined phase position by means of an electric circuit in one pitch of the incremental pattern. The absolute pattern is read on the basis of the synchronizing signal at a position except for the boundary region between the minimum reading units.
Abstract:
An encoder for indicating a position of a movable member and for generating at least two signals which are offset in phase from one another in accordance with movement of the movable member. The encoder includes a position detector and a presettable counter. The position detector generates a position reference signal indicating at least one reference position during movement of the movable member, and the presettable counter is preset for an absolute position of the encoder during movement of the movable member when the position reference signal is generated. The encoder can be constructed in a small size enabling use in servo systems and in industrial robots.
Abstract:
A method and apparatus for sensing proximity of an object using near-field effects. Modulated radio frequency energy is fed to an antenna. The antenna radiates this modulated radio frequency energy to charge the surface of an object. When the position of the object changes, the impedance of the antenna due to near-field effects changes. This impedance change is detected to provide an indication of the object's movement. The sensing device may be packaged to be inserted into a wall to provide a sensor having a leak-free seal.
Abstract:
A programmable, electronic, angular position indicator, based upon engineering units, estimates the angular displacement of a rotating rotor. The angular position indicator is programmed with the particular arrangement of teeth (or other markings) on the rotor. Intermediate angular displacements are interpolated between a limited number of positive angular displacement indications. Offsets, due to acceleration or deceleration of the rotor, are corrected at each positive angular displacement indication without skipping the output of each interpolated angular displacement. Angular displacement is determined in standard engineering units.
Abstract:
A detection process and device for electronic injection control of a multicylinder engine of an automobile engine, which performs the functions of measuring the speed of rotation of the engine, pinpointing the angular position of the top dead center of each cylinder of the engine, and identifying at any time which one of the cylinders for which the injection of fuel is to take place. The device includes a multipolar ring provided with multiple north and south magnetic poles distributed alternately on the circumference of the ring; a pair of sensors sensitive to the magnetic field produced by the multipolar ring mounted facing the ring and spaced angularly from one another; and an electronic processing interface connected to the sensors to deliver signals to a computer for control of the electronic injection of the engine.
Abstract:
A crankshaft angular position detecting apparatus for detecting the angular position of the crankshaft of an internal combustion engine. The crankshaft drives a timing wheel which has a plurality of circumferentially spaced slots located along its outer periphery. Two angularly spaced sensors are located adjacent the slots. The sensors develop voltage pulses as the slots move past the sensors. Two phase-displaced pulse trains are developed, one by each sensor, as the wheel rotates. The pattern of slots and the angular spacing of the sensors is such that a varying number of pulses of one pulse train occurs between consecutively occurring pulses of the other pulse train. The varying number of pulses provide different patterns and each pattern is indicative of a crankshaft position. The timing wheel is secured to the engine crankshaft and is located inside of the engine.
Abstract:
An absolute position detection encoder includes a coder having a track provided with first graduations of an absolute pattern and second graduations of an incremental pattern, plural sensors movable relative to the coder along the longitudinal direction of the track, and a signal processing circuit for processing detection pulse trains, obtained upon reading the first graduations by the sensors, in synchronism with the time point corresponding to approximately the mid position of the minimum reading unit of the first graduation. The encoder outputs the relative position between the coder and the sensors in the form of parallel code signals as the absolute position read out from the absolute pattern graduations on the coder. By detecting the absolute pattern in synchronism with the time point corresponding to substantially the middle of the minimum reading unit of the first graduations, an absolute position detection signal of the correct code contents free of readout errors may be taken out for both the forward and reverse directions of the relative movement. On account of the signal selection function by the binary repetitive rectangular signal obtained from the incremental pattern reading results, the absolute position detection signal of the correct code contents may be taken out simultaneously with turn-on of the power source. The binary repetitive rectangular signal may also be used for generating a sub-scale signal for substantially improving the resolving power.
Abstract:
A positional information generating apparatus comprises a code disposed on a main track on which M-sequence codes form a cyclic code of different code words, and sensors disposed for attaining relative movement with reference to a direction of the main track. The code word is detected from the main track by the sensors for generating positional information. A sensor array for the main track in which a greater number of sensors than the number of elements of a code word are disposed over a span corresponding to a length of one code word in such a way that at least one sensor is located on each code element to define a code word to be read. A relative position detector is provided for detecting a relative positional relationship between the sensor array for the main track and the main track. A sensor selecting circuit selects a sensor for each code element from the sensor array for the main track, which is in a position to detect the code element, based on the detection signal from the relative position detector, and allows transmission of the detection signal from said sensor. A main track includes a cyclic code of different code words disposed thereon, and a sub-track includes discrimination elements arranged cyclically along the main track.
Abstract:
A disk is secured to a camshaft of an engine, and a plurality of projections are provided on a periphery of the disk in angular ranges of a crankshaft which are out of angular ranges where the engine stops frequently. Projections in each range are arranged to indicate a specific cylinder of the engine. A sensor is provided for sensing the projections and for producing cylinder representing signal. A discriminator is provided for producing discriminating signals representing respective cylinders in accordance with the cylinder representing signals.
Abstract:
A fiber optic detector head senses a light reflective or transmissive pattern on an encoder disk rotated by an engine shaft. The pattern results in four different light levels which are translated by a detector into an electrical pulse train having four different voltages including a reference or background voltage. One light level is reserved for an index mark, another level for cylinder position marks and still another level for finer measurement of position and speed between the cylinder marks. Patterns encoded into the single pulse train are decoded by a microprocessor to provide specific engine cylinder position information as well as engine speed information.