Abstract:
A tunnel excavation device includes a front body portion configured to support a cutter head and a rear body portion. The rear body portion includes a gripper carrier and a gripper portion. The gripper carrier is disposed in a rear of the front body portion. The gripper portion is provided on the gripper carrier. The gripper portion includes a groove portion and a wheel portion. The groove portion is formed in a recess shape toward the rear main body. The wheel portion is disposed in the groove portion.
Abstract:
An apparatus for excavating a tunnel includes a cutting wheel equipped with measuring modules of sensor means on its cutting wheel face in order to directly sample the consistency of the material present between the cutting wheel face and a tunnel face by recording different types of measured values characteristic of this.
Abstract:
A tunnel excavation device includes a first body portion and an erector device. The first body portion includes a cutter head and a support portion rotatably supporting the cutter head. The erector device is configured to transport a supporting member toward an excavated wall surface. The erector device is provided on the support portion. The erector device includes a ring portion holding the supporting member, and a posture changing device configured to change an angle formed by a center axis of the ring portion and a rotation axis of the cutter head in a plan view.
Abstract:
A tunnel boring apparatus includes a shield body and a cutting disc provided at a front portion of the shield body. The tunnel boring apparatus includes a high pressure liquid device, which includes a liquid storage tank for storing a predetermined amount of liquid, a pressure raising device for increasing a pressure of the liquid, and a plurality of nozzles. The pressing raising device is connected to the liquid storage tank, and to a central rotating head through a first guiding pipeline. The nozzles are provided on the cutting disc, and are connected to the central rotating head through a second guiding pipeline.
Abstract:
A boring machine comprises a forward section, a rear section, a parallel link mechanism, stroke sensors, pressure sensors, and a controller. The parallel link mechanism includes eight thrust jacks that change the position and attitude of the forward section with respect to the rear section. The controller computes a target allocation force to be allocated to eight thrust jacks on the basis of the sensing result from the stroke sensors and the pressure sensors, and controls the thrust jacks to perform stroke control on six of the thrust jacks and perform force control on two of the thrust jacks.
Abstract:
A boring machine comprises a forward section, a rear section, an articulation point, a parallel link mechanism, an input component, an articulation point position computer, and a jack controller. The parallel link mechanism includes a plurality of thrust jacks that change the position of the forward section with respect to the rear section. The articulation point position computer computes the position of the articulation point on the basis of the control inputs received by the input component, and the positions of the center line and center point of the rear section and the center point of the forward section. The jack controller controls the stroke amounts of the thrust jacks to produce movement corresponding to a curve generated from the positions of the center point of the rear section, the articulation point, and the center point of the forward section.
Abstract:
Embodiments of the invention generally relate to tunnel boring machine cutter assemblies, such as ripping and scraping cutter or tool assemblies, (collectively “cutter assemblies”), and related methods of use and manufacturing. The various embodiments of the cutter assemblies described herein may be used in tunnel boring machines (“TBMs”), earth pressure balance machines (“EPBs”), raise drilling systems, large diameter blind drilling systems, and other types of mechanical drilling and excavation systems.
Abstract:
A drill bit exchange device for a shield tunneling machine includes: a housing with an aperture; a valve body housed in a chamber of the housing, the valve body being pivotable about a pivot axis (Ob) inclined at a predetermined angle with respect to an axis perpendicular to the front of a cutter head; a bit-housing hole formed in the valve body to detachably accommodate a bit; and an exchange seal part located at the front of the chamber and at a symmetrical position from the aperture with respect to the pivot axis (Ob). The valve body is pivoted about the pivot axis (Ob) to move the bit, which faces the aperture, to the exchange seal part, allowing the bit to be removed from the bit-housing hole and exchanged.
Abstract:
A tunnel boring machine (100) includes a cutterhead assembly (102) rotatably mounted to a forward shield assembly (116) through a cutterhead support assembly (110). The cutterhead support assembly is configured to receive a variable number of drive assemblies (105), such that the number of drive assemblies may be selected after fabricating the cutterhead support structure (120). The cutterhead support structure includes a housing portion (121) that houses the main bearing assembly (101) and a drive gear (104). A plurality of drive mount stations (111) provide access to the drive gear, and are provided with a pinion housing (130) for stations that receive a drive assembly, or with a cradle cover (140) for stations that do not receive a drive assembly.
Abstract:
A ripper tool for a tunnel boring machine includes a tool body and a plurality of cutting element inserts. The tool body has a plurality of socket cavities. A tool body blank can be heat treated to increase the hardness of the tool body blank. The socket cavities can be machined in the tool body blank after the tool body blank is heat treated. The cutting element inserts are mounted to the tool body. The cutting element inserts are respectively press fit in the socket cavities. The ripper tool can be pivotably mounted to a cutter head of the TBM.