Abstract:
Embodiments of the invention generally relate to tunnel boring machine cutter assemblies, such as ripping and scraping cutter or tool assemblies, (collectively “cutter assemblies”), and related methods of use and manufacturing. The various embodiments of the cutter assemblies described herein may be used in tunnel boring machines (“TBMs”), earth pressure balance machines (“EPBs”), raise drilling systems, large diameter blind drilling systems, and other types of mechanical drilling and excavation systems.
Abstract:
Embodiments described herein relate to material-removal systems as well as cutting tools and cutting tool assemblies that may be used in the material-removal systems. More specifically, for example, the material-removal systems, and particularly the cutting tools, may engage and fail target material. In some instances, the material-removal systems may be used in mining operations.
Abstract:
Embodiments of the invention generally relate to tunnel boring machine cutter assemblies, such as ripping and scraping cutter or tool assemblies, (collectively “cutter assemblies”), and related methods of use and manufacturing. The various embodiments of the cutter assemblies described herein may be used in tunnel boring machines (“TBMs”), earth pressure balance machines (“EPBs”), raise drilling systems, large diameter blind drilling systems, and other types of mechanical drilling and excavation systems.
Abstract:
Embodiments of the invention generally relate to tunnel boring machine cutter assemblies, such as ripping and scraping cutter or tool assemblies, (collectively “cutter assemblies”), and related methods of use and manufacturing. The various embodiments of the cutter assemblies described herein may be used in tunnel boring machines (“TBMs”), earth pressure balance machines (“EPBs”), raise drilling systems, large diameter blind drilling systems, and other types of mechanical drilling and excavation systems.
Abstract:
In an embodiment, a cutter assembly for use on a tunnel boring machine may include a cutter ring extending circumferentially about a central axis. The cutter ring may include a radially inner surface and a radially outer surface. The cutter assembly may also include superabrasive cutting elements distributed circumferentially about the axis. Each of the superabrasive cutting elements may be attached to the cutter ring and may include a polycrystalline diamond (“PCD”) body having a working surface. At least a number of the cutting elements may extend beyond the outer surface of the cutter ring.
Abstract:
Embodiments described herein relate to material-removal systems as well as cutting tools and cutting tool assemblies that may be used in the material-removal systems. More specifically, for example, the material-removal systems, and particularly the cutting tools, may engage and fail target material. In some instances, the material-removal systems may be used in mining operations.
Abstract:
Embodiments of the invention generally relate to tunnel boring machine cutter assemblies, such as ripping and scraping cutter or tool assemblies, (collectively “cutter assemblies”), and related methods of use and manufacturing. The various embodiments of the cutter assemblies described herein may be used in tunnel boring machines (“TBMs”), earth pressure balance machines (“EPBs”), raise drilling systems, large diameter blind drilling systems, and other types of mechanical drilling and excavation systems.
Abstract:
Embodiments disclosed herein involve polycrystalline diamond (“PCD”) tables and polycrystalline diamond compacts (“PDCs”) that include PCD tables as well as methods and apparatuses for manufacturing thereof. Some embodiments include a canister assembly that may be used in a high-pressure/high-temperature (“HPHT”) process or other heating process to manufacture the PCD tables and/or the PDCs.
Abstract:
In an embodiment, a disc cutter for use on a tunnel boring machine may include a shaft and a cutter assembly rotatably mounted on the shaft. The cutter assembly may include a cutter ring extending circumferentially about a central axis and one or more bearing apparatuses rotatably mounting the cutter assembly to the shaft. Each bearing apparatuses may include a rotor extending circumferentially about the central axis and a first plurality of superhard bearing elements distributed circumferentially about the central axis. Each first superhard bearing element may be attached to the rotor and may include a bearing surface. The bearing apparatuses may further include a stator extending circumferentially about the central axis and a second plurality of superhard bearing elements attached to the stator that are generally opposed to the first plurality of superhard bearing elements of the rotor.
Abstract:
A cutting tool which may be used in machining various material may include a body and one or more cutting elements associated therewith. In one example, the cutting element(s) may comprise a superhard table, such as a polycrystalline diamond table. In some embodiments, the polycrystalline diamond table may have a diamond density of approximately 95 percent volume or greater. In some embodiments, the thickness of the superhard table may be approximately 0.15 inch. In some embodiments, the superhard table may include a chip-breaking feature or structure. Methods of shaping, finishing, or otherwise machining materials are also provided, including the machining of materials comprising titanium.