Abstract:
A dairy inflation includes a barrel portion connected to a milk tube portion for extracting milk from a teat of an animal. The barrel portion includes an axial passage defined by a wall, the wall having an exterior surface defining an outer periphery having a substantially circular shape. The wall further includes an interior surface defining an inner periphery having a substantially elliptical shape. The elliptical inner periphery includes a major axis and a minor axis, and the disposition of the elliptical inner periphery within the circular outer periphery creates reduced-thickness regions on opposing sides of the wall along the major axis. The reduced-thickness regions allow a controlled collapse of the barrel portion during milking operations.
Abstract:
In certain embodiments, a system includes a front wall, a rear wall positioned substantially parallel to the front wall, and first and second side walls each extending between the front wall and the rear wall. The first side wall includes a gate, and the second side wall is spaced apart from the first side wall such that the front wall, the rear wall, the first side wall, and the second side wall define a milking box stall of a size sufficient to accommodate a dairy livestock. The system includes an equipment portion located adjacent to the rear wall. The equipment portion houses a robotic attacher configured to extend between the rear legs of a dairy livestock located within the milking box stall in order to attach milking equipment to the dairy livestock.
Abstract:
In certain embodiments, a system includes a front wall, a rear wall positioned substantially parallel to the front wall, and first and second side walls each extending between the front wall and the rear wall. The first side wall includes a gate, and the second side wall is spaced apart from the first side wall such that the front wall, the rear wall, the first side wall, and the second side wall define a milking box stall of a size sufficient to accommodate a dairy livestock. The system includes an equipment portion located adjacent to the rear wall. The equipment portion houses a robotic attacher configured to extend between the rear legs of a dairy livestock located within the milking box stall in order to attach milking equipment to the dairy livestock.
Abstract:
A dairy inflation includes a barrel portion connected to a milk tube portion for extracting milk from a teat of an animal. The barrel portion includes an axial passage defined by a wall, the wall having an exterior surface defining an outer periphery having a substantially circular shape. The wall further includes an interior surface defining an inner periphery having a substantially elliptical shape. The elliptical inner periphery includes a major axis and a minor axis, and the disposition of the elliptical inner periphery within the circular outer periphery creates reduced-thickness regions on opposing sides of the wall along the major axis. The reduced-thickness regions allow a controlled collapse of the barrel portion during milking operations.
Abstract:
A device for positioning a milking machine inflation onto an animal's teat. The device is rubber and has an opening through the device. The device fits over the head of an inflation with the inflation head stopping at an inflation plate inside the device. The inflation with device is positioned over the animal's teat near the udder. The device spaces the inflation from the udder, thus preventing creep of the inflation up the teat and the resultant pinching of the milk canal. Flexible tabs can be provided to the spacer to retain the spacer on the teat. Clip or clips can be provided to hold the device onto the inflation. The device is external to the inflation and is easily removed after milking is completed. The device is easily transferable to another inflation.
Abstract:
An inflation for an automatic milking machine is molded as an integral unit from an elastomeric material. The inflation is formed to have an elongate, hollow barrel. The barrel has a substantially square cross-sectional shape and terminates in open upper and lower ends. A substantially cylindrical head is molded integrally to the upper end of the barrel. The head has a substantially cylindrical side wall. A diaphragm-like mouthpart is positioned across the otherwise open, upper end of the cylindrical side wall, with the mouthpart having a central opening that is adapted to accommodate the teat of an animal to be milked. A transition section is molded in the head so as to connect the upper end of the barrel with an inner surface of the side wall to form an internal, mouthpiece chamber between the transition section and the mouthpart. The transition section has an outwardly curved surface that curves from the upper end of the barrel to an inner surface of the side wall in a smooth curve having a radius of about 0.430 inch to about 0.445 inch.
Abstract:
An apparatus for electrical stimulation of the mammae comprises a serial arrangement of a master oscillator, a stimulating pulse generator, an amplitude modulator, a stimulating pulse polarity changing unit, an output unit, and a distributing line with leads for respective points subject to electrical stimulation. In addition, the apparatus comprises modulating signal generator and a unit to form excitation and space periods, which connect each other and the frequency and amplitude modulators as well, and also comprises an automatic stimulating pulse polarity control unit coupled to the stimulating pulse generator, to the modulating signal generator, and to the stimulating pulse polarity changing unit. There is a stimulating pulse amplitude adjustment circuit for each of the points subject to electrical stimulation, coupled to a matching unit which connects surface-type electrodes.