Abstract:
A photoacoustic medical imaging device may include a substrate, an array of ultrasonic transducers on the substrate, at least one groove etched on the substrate, at least one optical fiber, and at least one facet. Each optical fiber is disposed in one of the grooves. Each facet is etched in one of the grooves and coated with a layer of metal having high infrared reflectivity. Each optical fiber is configured to guide infrared light from a light source through the fiber and toward the respective facet. The facet is configured to reflect the infrared light toward a target.
Abstract:
Image and video processing using multi-scale amplitude-modulation frequency-modulation (“AM-FM”) demodulation where a multi-scale filterbank with bandpass filters that correspond to each scale are used to calculate estimates for instantaneous amplitude, instantaneous phase, and instantaneous frequency. The image and video are reconstructed using the instantaneous amplitude and instantaneous frequency estimates and variable-spacing local linear phase and multi-scale least square reconstruction techniques. AM-FM demodulation is applicable in imaging modalities such as electron microscopy, spectral and hyperspectral devices, ultrasound, magnetic resonance imaging (“MRI”), positron emission tomography (“PET”), histology, color and monochrome images, molecular imaging, radiographs (“X-rays”), computer tomography (“CT”), and others. Specific applications include fingerprint identification, detection and diagnosis of retinal disease, malignant cancer tumors, cardiac image segmentation, atherosclerosis characterization, brain function, histopathology specimen classification, characterization of anatomical structure such as carotid artery walls and plaques or cardiac motion and as the basis for computer-aided diagnosis to name a few.
Abstract:
Various embodiments provide materials and methods for an optically pumped switch device, an optically pumped reconfigurable antenna system (OPRAS), and their related antenna devices. In one embodiment, the switch devices and the antenna devices can have a photoconductive cell. The photoconductive cell can include a semiconductive substrate that is conductive to reflect a radio frequency (RF) signal in response to an optical signal.
Abstract:
A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.
Abstract:
Various embodiments provide materials and methods for integrating exemplary heterostructure field-effect transistor (HFET) driver circuit or thyristor driver circuit with LED structures to reduce or eliminate resistance and/or inductance associated with their conventional connections.
Abstract:
Swellable particles for delivery of a drug or other working agent to the pulmonary system are provided. The swellable particles include a dehydrated (dry) aerodynamic particle diameter of 5 μm or less to enable delivery to the respiratory tract, such as for example to the tracheo-bronchial airways of the upper respiratory tract and/or to the alveolic regions of the deep lung, and a hydrated particle diameter that is greater than 6 μm volume mean diameter to retard or prevent their phagocytosis by the macrophages present in airways of the respiratory tract.
Abstract:
The present invention is directed to novel non-invasive diagnostic tools to image cancers, especially, leukemia and non-Hodgkin's lymphomas (NHL) with minimal toxicity in vivo. The present invention represents a clear advance in the art which presently relies on tissue biopsy for diagnoses of these cancers. The novel imaging probe is capable of detecting precancerous cells, as well as their metastatic spread in tissues. This represents a quantum step forward in the diagnosis and staging of NHL using non-invasively molecular imaging techniques. This novel probe will also be useful to monitor patients response to chemotherapy treatments and other interventions or therapies used in the treatment of NHL. Compounds according to the present invention may be used as diagnostic tools for a number of conditions and diseases states as well as therapeutic agents for treating such conditions and disease states.
Abstract:
Exemplary embodiments provide materials and methods for forming CNTs-polymer composites (e.g., CNTs-SBR latex nano-composites and/or CNTs-epoxy nano-composites), CNTs-polymer concrete, and CNTs-polymer modified cementitious composites. In one embodiment, a plurality of CNTs and a surfactant-containing polymer, including a surfactant attached to a polymer chain, can be dispersed within a cementitious matrix to form a CNTs-polymer modified cementitious composite with the surfactant non-covalently bonded to one or more CNTs.
Abstract:
In accordance with the aspects of the present disclosure, a method and apparatus is disclosed for imaging interferometric microscopy (IIM), which can use an immersion medium to enhance resolution up to a resolution of linear systems resolution limit of λ/4n, where λ is the wavelength in free space and n is the index of refraction of a transmission medium.
Abstract:
In accordance with the invention, there are electrocaloric devices, pyroelectric devices and methods of forming them. A device which can be a pyroelectric energy generator or an electrocaloric cooling device, can include a first reservoir at a first temperature and a second reservoir at a second temperature, wherein the second temperature is higher than the first temperature. The device can also include a plurality of liquid crystal thermal switches disposed between the first reservoir and the second reservoir and one or more active layers disposed between the first reservoir and the second reservoir, such that each of the one or more active layers is sandwiched between two liquid crystal thermal switches. The device can further include one or more power supplies to apply voltage to the plurality of liquid crystal thermal switches and the one or more the active layers.