Abstract:
A method of forming a photomask of a semiconductor device comprising the steps of forming a photosensitive film on a substrate and exposing the photosensitive film on the substrate by radiating with a radiation beam a plurality of butting unit regions defining butting portions between the butting unit regions and controlling said radiating of the butting unit region so that the butting portions of the butting unit regions are formed only in portions corresponding to isolation regions or alternatively, they are not formed in portions corresponding to contact areas.
Abstract:
A method of manufacturing a semiconductor device, comprises the steps of forming a first transfer pattern corresponding to a mask pattern on a major surface side of a semiconductor substrate through a first mask plate on which the first mask pattern having a straight portion and a bent portion is formed, and forming a second transfer pattern corresponding to a second mask pattern on a major surface side of the semiconductor substrate through a second mask plate on which the second mask pattern having a pattern arranged at a position corresponding to the straight portion is formed.
Abstract:
A profile of a developed resist is exactly simulated irrespective of whether or not a resist pattern is dense. A dissolution rate of a film to be processed, which film is provided on a substrate, is varied in accordance with a concentration of a developer and the profile of the developed resist is simulated with use of the varied dissolution rate. In addition, a spatial average of an optical image of a resist, which is averaged in the thickness direction of the resist, is calculated and the dissolution rate of the resist is modulated by using the calculated spatial average. The profile of the resist is simulated by using the modulated dissolution rate. Therefore, the profile of the resist on the substrate, which profile varies when the resist is exposed in a desired pattern and developed, can be exactly estimated.
Abstract:
The profile simulation method of predicting a processed profile of a surface of a substrate to be changed by physically or chemically processing a film on the substrate to be processed comprises a step of changing a processing speed in correspondence with a convex portion and a recessed portion of the film on the substrate.
Abstract:
A transmitting photomask includes an optically transparent substrate having a major surface on which a plurality of recesses are selectively formed and transmitting exposure light, a plurality of opaque materials formed on the portions of the major surface of the transparent substrate, other than the recesses and preventing the exposure light from passing therethrough, and a plurality of transmitting portions constituted of the recesses. Each of the recesses has side walls formed perpendicular to the major surface of the transparent substrate so as to substantially coincide with a corresponding end face of each of the opaque materials, and adjacent transmitting portions have different depths. A method of manufacturing a transmitting photomask, includes a step of forming an opaque film preventing exposure light from passing therethrough on an optically transparent substrate transmitting the exposure light, a step of forming a plurality of opening patterns for forming a transmitting portion on the opaque film and thus forming a plurality of opaque materials with remaining portions of the opaque film, and a step of forming a plurality of transmitting portions including recesses having different depths alternately by etching the transparent substrate through the opening patterns by use of anisotropic etching.
Abstract:
A reflection phase shifting mask used to expose a pattern by forming reflected light having a phase difference upon reflection of light, includes a substrate for reflecting exposure light, a phase shifting layer formed on a portion on the substrate, and a light transmitting medium formed on the substrate and the phase shifting layer, wherein the thickness of the phase shifting layer is set such that the phase difference between light reflected by the substrate and light reflected by the phase shifting layer becomes 180.degree..
Abstract:
According to the pattern shape determining method of the embodiment, a first reference position of a pattern shape is set on a first pattern and a second reference position of a pattern shape is set on a second pattern. Moreover, an allowable dimensional difference between the first pattern and the second pattern is set to a value corresponding to a distance from the first reference position. Then, it is determined whether the second pattern has a pattern shape identical with the first pattern, based on whether a dimensional difference between the first pattern and the second pattern is within a range of an allowable dimensional difference set at a position at which the dimensional difference is calculated.
Abstract:
A resist pattern (5) is formed in a dimension of a limitation of an exposure resolution over a hard mask material film (4) over a work film (3). The material film (4) is processed using the resist pattern (5) as a mask. A hard mask pattern (6) is thereby formed. Thereby a resist pattern (7), over a non-selected region (6b), having an opening (7a) through which a selection region (6a) in the mask pattern is exposed is formed. Only the mask pattern (6a) exposed through the opening (7a) is slimmed by performing a selection etching, the work film (3) is etched by using the mask pattern (6). A work film pattern (8) is thereby formed, which include a wide pattern section (8a) of a dimension width of the limitation of the exposure resolution and a slimmed pattern section (8a) of a dimension that is not more than the limitation of the exposure resolution.
Abstract:
A pattern correcting method for correcting a design pattern to form a desired pattern on a wafer is disclosed, which comprises defining an allowable dimensional change quantity of each of design patterns, defining a pattern correction condition for the each design pattern based on the allowable dimensional change quantity defined for the each design pattern, and correcting the each design pattern based on the pattern correction condition defined for the each design pattern.
Abstract:
A method for designing a semiconductor integrated circuit is provided which comprises compacting a design layout of a semiconductor integrated circuit on the basis of a given design rule to obtain a compacted pattern, predicting a pattern to be formed at a surface area of a wafer for forming the semiconductor integrated circuit on the basis of the compacted pattern, obtaining an evaluated value by comparing the predicted pattern with the compacted pattern, deciding whether the evaluated value satisfies a predetermined condition, and modifying the design rule when the evaluated value is decided as not satisfying the predetermined condition.