Abstract:
Operations for a WLAN-capable remote control device and a controlled device are disclosed. A first network device (e.g., remote control) may receive a user input for controlling operation of a second network device (e.g., controlled device) of a communication network. The first network device may transition to an active operating state in response to receiving the user input. The first network device may transmit the first user input to the second network device. The first network device may exit the active operating state in response to successfully transmitting the first user input to the second network device.
Abstract:
A method of adjusting a carrier sense threshold to avoid hidden nodes during wireless broadcast. The method includes monitoring a load of the peer-to-peer network before broadcasting a message from a node. The method also includes adjusting a carrier sense threshold (CST) based on the load of the peer-to-peer network to avoid broadcast message collisions due to one or more hidden nodes.
Abstract:
Methods, devices, and computer program products for station signaling impaired receiver operation are disclosed. One aspect of the present disclosure relates to a method of communication in a wireless communication network including determining an impairment causing a packet drop at a first wireless device, the impairment capable of causing the packet drop(s) based on a condition other than poor link conditions. The method further includes generating an indication of the impairment, the indication comprising an identification of the first wireless device and information about the impairment, and transmitting the indication to a second device configured to transmit packets to the wireless device. Another method of communication disclosed comprises receiving an indication that an impairment is capable of inhibiting reception of packets at another wireless device based on a condition other than poor link conditions, and adjusting a behavior of the wireless device that received the indication, based on the indication.
Abstract:
Methods, systems, and devices for wireless communications are described that asynchronous carrier aggregation, including between high frequency band and lower frequency band transmissions. A user equipment (UE) may be configured to monitor transmissions in a first frequency band and a second frequency band. The UE may measure a timing difference between transmissions in the first frequency band and one or more of the transmissions in the second frequency band, and transmit an indication of the timing difference to a base station. The base station may use the timing difference to determine whether the UE is to use asynchronous carrier aggregation. If the base station determines that the UE is to use asynchronous carrier aggregation, the base station may configure the UE to observe at least a minimum amount of delay when conducting uplink signaling via one of the frequency bands.
Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a user equipment (UE) may use transmissions causing power density exposure (PDE) to nearby users. To reduce the PDE of an antenna module (e.g., below a maximum PDE threshold), the UE may implement a shielding strip around the antenna module. For example, the antenna module may include a substrate having a first surface and a set of antenna elements on the first surface. The shielding strip may enclose the set of antenna elements of the antenna module and extend away from the first surface above the antenna elements. The shielding strip may reduce PDE outside a field of view of the antenna module. Additionally, in some cases, the placement of the antenna module in the UE and the materials used for constructing the UE may further reduce PDE.
Abstract:
Methods, systems, and devices for wireless communications are described that asynchronous carrier aggregation, including between high frequency band and lower frequency band transmissions. A user equipment (UE) may be configured to monitor transmissions in a first frequency band and a second frequency band. The UE may measure a timing difference between transmissions in the first frequency band and one or more of the transmissions in the second frequency band, and transmit an indication of the timing difference to a base station. The base station may use the timing difference to determine whether the UE is to use asynchronous carrier aggregation. If the base station determines that the UE is to use asynchronous carrier aggregation, the base station may configure the UE to observe at least a minimum amount of delay when conducting uplink signaling via one of the frequency bands.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may configure a first sub-band and a second sub-band of a system bandwidth for communication with a user equipment (UE). The base station may determine a spatial quasi co-location (QCL) relationship between the first sub-band and the second sub-band and may transmit signaling to the UE that indicates the determined spatial QCL relationship. Upon receiving the signaling, the UE may derive, based on the indicated spatial QCL relationship, spatial parameters (e.g., beam width, pointing angle, etc.) for communication with the base station via the second sub-band. The spatial parameters may be derived based on spatial parameters used for reception of a downlink transmission from the base station via the first sub-band. Subsequently, the UE may communicate with the base station via the second sub-band using the derived spatial parameters.
Abstract:
Disclosed embodiments facilitate wireless channel calibration, including ranging and direction finding, between wirelessly networked devices. In some embodiments. a method on a first station (STA) may comprise: transmitting a first NDPA frame to one or more second stations (STAs), the first NDPA frame comprising a first bit indicating that one or more subsequent frames comprise ranging or angular information; and transmitting, after a Short Interval Frame Space (SIFS) time interval, a second frame. The second frame may be one of: a Null Data Packet az (NDP_az) frame with information about a time of transmission of the NDP_az frame, or a Null Data Packet (NDP) frame, or a Beam Refinement Protocol (BRP) frame. The first NDPA frame may be unicast, multicast, or broadcast.
Abstract:
A joint low-band and high-band operation is disclosed for use in new radio (NR) shared spectrum (NR-SS) networks. In such networks, uplink and downlink communications may occur over separate bands, selected based on performance or quality characteristics. A user equipment (UE) may search each of one or both of a low-band spectrum and a high-band spectrum for system information signal that includes both a low-band random access configuration and a high-band random access configuration. The UE transmits a random access request on one of the bands and receives the random access response from one or more cells on the other band. The UE continues the random access procedure, transmitting the uplink message based on the random access response on the first band to a selected cell. The UE would then receive the contention resolution message from the selected cell on the second band.
Abstract:
Aspects of the disclosure relate to synchronization signaling supporting multiple waveforms. A synchronization signal block (SSB) is configurable for transmission using either at least a first waveform or a second waveform, where the first waveform has higher peak to average power ratio (PAPR) characteristics such as OFDM and the second waveform has lower PAPR characteristics, such as DFT-S-OFDM. The SSB is transmitted selectively using either the first waveform or the second waveform for transmission of the SSB. Furthermore, the characteristics of the transmission such as a predetermined pattern of the first and second waveform transmissions may be utilized to communicate to a receiver the type of waveform being used. In this manner, SSB transmissions may take advantage of respective advantages afforded by each type of waveform, particularly when using higher frequency transmissions above 40 GHz in wireless communication systems.