Abstract:
Certain aspects of the present disclosure provide techniques for autonomous reference signal transmission configuration. Certain aspects provide a method of receiving a configuration message from the base station, wherein the configuration message comprises an indication of a set of candidate resources for transmitting the reference signal. Certain aspects provide a method of detecting a future downlink transmission from the base station, and other aspects provide a method of transmitting, in response to detecting the future downlink transmission, the reference signal utilizing a first resource of the set of candidate resources prior to receiving the future downlink transmission via a second resource in the set of candidate resources.
Abstract:
This disclosure provides methods, devices, and systems for processing uplink broadcast or multicast (“broadcast/multicast”) packets from a user equipment (UE) and distributing the broadcast/multicast packets to other UEs in a network. In some aspects, a UE may receive, from a base station, a downlink packet comprising broadcast or multicast (broadcast/multicast) Ethernet data for a protocol data unit (PDU) session of the UE with a data network (DN) associated with the base station, determining whether the downlink packet corresponds to an uplink packet previously transmitted to the base station by the UE, discarding the downlink packet for the PDU session based on determining that the UE previously transmitted the corresponding uplink packet comprising the broadcast/multicast Ethernet data for the PDU session to the base station, and processing the downlink packet for the PDU session based on determining that the UE did not previously transmit the corresponding uplink packet.
Abstract:
Certain aspects of the present disclosure provide techniques for determining a configuration for packet data convergence protocol (PDCP) duplication. Certain aspects provide a method for wireless communication. The method generally includes determining a PDCP duplication configuration corresponding to at least one of multi-connectivity (MC) or carrier-aggregation (CA) for communication of at least one bearer with a user-equipment (UE), wherein the determination is based on an indication corresponding to a link quality for the communication, and sending an indication of the determined configuration for the communication of the at least one bearer.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, an apparatus is configured to identify interference information associated with at least one traffic stream. The apparatus is further configured to transmit a message to an access point. The message includes a stream ID associated with the interference information and with the at least one traffic stream. The message includes the interference information, and the interference information includes an offset value and an interval/duration value.
Abstract:
Seamless path switching is made possible in a multi-hop network based upon stream marker packets and additional path distinguishing operations. A device receiving out-of-order packets on the same ingress interface is capable of determining a proper order for the incoming packets having different upstream paths. Packets may be reordered at a relay device or a destination device based upon where a path update is initiated. Reordering packets from the various upstream paths may be dependent upon a type of service associated with the packet.
Abstract:
A UE or mobile entity in a wireless communication may assist network optimization by determining a location uncovered by a wireless network, generate a coverage hole detected message if one or more conditions associated with the uncovered location are satisfied, and determining a time to transmit the coverage hole detected message to a covered wireless network. The covered network may act on the message to add covered in a second network so that the second network covers the UE. In other aspects, a UE or mobile entity may detect cell congestion in a first cell and assist the network in offloading congestion from the congested cell. In other aspects, a UE or mobile entity may detect backhaul congestion on a first cell, and assist in offloading backhaul communication for the first cell via a second cell.
Abstract:
Disclosed are system and method for classifying location of a mobile device in a femtocell. In an aspect, the system and method are configured to receive, by a femtocell, location measurement information and performance measurement reports from a mobile device; classify location of the mobile device as indoors or outdoors based on the received location measurement information; and adjust a coverage area, transmit power, and/or radio frequency (RF) channel/band of the femtocell based on the location classification of the mobile device and performance measurements reports.
Abstract:
Coverage holes are identified and appropriate action taken in response thereto. The identification of a coverage hole may be based on, for example, measurements taken at an access point, measurement report messages from an access terminal, idle user registrations, active user handovers, or handover history. Upon identification of a coverage hole, action may be taken to mitigate (e.g., reduce or eliminate) the coverage hole and/or avoid the coverage hole. For example, in some embodiments, access point resources such as power, frequency and time are allocated accordingly. The action to be taken may depend on whether a coverage hole is noise-limited or interference-limited. In some embodiments, the manner in which handovers are conducted is modified upon identification of a coverage hole. The above actions may be performed entirely at an access point.