Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to session management between a wireless wide area network (WWAN) and a wireless local area network (WLAN). An exemplary method includes exchanging messages in a first wireless local area network (WLAN) during a communication session, maintaining information for the communication session, enabling a second WLAN for the communication session based on detection of at least one first condition, and utilizing the information for the communication session via the second WLAN.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for low-latency communications in wireless networks. In some implementations, a wireless station (STA) may transmit a data session request to a root access point (AP) in a wireless network responsive to activating an application associated with latency restricted (LR) data traffic. In some aspects, the data session request may indicate one or more preferred channels to carry the LR data traffic. In some other aspects, the data session request may indicate one or more preferred times to exchange the LR data traffic. In some implementations, the root AP may establish an LR data path with the STA based on the preferred time or frequency resources indicated in the data session request. The LR data path may include time or frequency resources that are reserved for LR data traffic between the root AP and the STA.
Abstract:
Aspects presented herein relate to methods and devices for graphics processing including an apparatus, e.g., client device or a server. The apparatus may transmit, to a server at a beginning of a first time period, at least one first head pose associated with a position of the client device, the first time period being synchronized with the server. The apparatus may also receive, from the server during a second time period, at least one first frame including first content based on the at least one first head pose, the second time period being synchronized with the server. Further, the apparatus may display, upon receiving the at least one frame during the second time period, the at least one first frame including the first content.
Abstract:
Techniques are provided for adaptively controlling an encoding device to allow dynamic insertion intra-coded video content based on feedback information. For example, at least a portion of a video slice of a video frame in a video bitstream can be determined to be missing or corrupted. Feedback information indicating at least the portion of the video slice is missing or corrupted can be sent to an encoding device. An updated video bitstream can be received from the encoding device in response to the feedback information. The updated video bitstream can include at least one intra-coded video slice having a size that is larger than the missing or corrupted video slice. The size of the at least one intra-coded video slice can be determined to cover the missing or corrupted slice and propagated error in the video frame caused by the missing or corrupted slice.
Abstract:
A method, device, and system for managing wireless communications between a transmitting device and a receiving device including adjusting a size of a frame to be transmitted in response to determining that a potential degradation in reception of information within the frame to be transmitted due to relative motions of the transmitting device and the receiving device is likely to cause packet error rates of sub-frames within the frame to be transmitted to exceed a first packet error rate threshold value.
Abstract:
This disclosure provides methods, components, devices, and systems for wireless communication. Some aspects more specifically relate to dynamic path selection for wireless connectivity. An access point (AP) may receive communication link information and device status information from cellular-enabled devices in a wireless local area network (WLAN). The communication link information may indicate path metrics (such as link quality information) associated with respective connections between the cellular-enabled devices and a communication network (such as the Internet). The device status information may indicate operational metrics associated with the cellular-enabled devices (such as battery status information or cellular subscription information). If, for example, the performance of a default connection between the AP and the communication network deteriorates, the AP may select one of the cellular-enabled devices to relay wireless communications between the communication network and the AP in accordance with the communication link information and the device status information.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for low-latency communications in wireless networks. In some implementations, a wireless station (STA) may transmit a data session request to a root access point (AP) in a wireless network responsive to activating an application associated with latency restricted (LR) data traffic. In some aspects, the data session request may indicate one or more preferred channels to carry the LR data traffic. In some other aspects, the data session request may indicate one or more preferred times to exchange the LR data traffic. In some implementations, the root AP may establish an LR data path with the STA based on the preferred time or frequency resources indicated in the data session request. The LR data path may include time or frequency resources that are reserved for LR data traffic between the root AP and the STA.
Abstract:
This disclosure provides systems, methods and apparatus for synchronous channel access control of a wireless system. In some aspects, a device may use a TWT session to communicate with a second device during one or more TWT service periods. Uplink and downlink communications may be coordinated to both be in a TWT service period to allow a device to enter a low power mode outside of the TWT service period. The TWT session, including the service periods, may be configured and managed by the device or the second device to ensure the communications associated with an XR experience between the devices (such as pose data frames or tracking frames provided as uplink data and video data frames provided as downlink data) meet latency requirements or other requirements for the XR experience. Use of TWT service periods allows other devices to use the wireless medium outside of the TWT service periods.
Abstract:
A hybrid device can be configured to select a transmit interface to attempt to ensure that each network interface of the hybrid device supports unidirectional traffic. Each of the plurality of network interfaces of the hybrid device can be categorized into one of a set of interface classes based on whether incoming traffic is received at the network interface and/or whether outgoing traffic is transmitted from the network interface. A transmit interface class is selected from the set of interface classes based, at least in part, on a priority level associated with each of the interface classes. One of the network interfaces that belongs to the transmit interface class is selected as a transmit interface for transmitting the frame on the communication network.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may communicate extended reality (XR) traffic with a network node via an access link. The UE may switch from communicating the XR traffic via the access link to communicating the XR traffic via a relay UE using a device-to-device communication link responsive to satisfaction of a condition relating to a power usage of the UE or relating to throughput or congestion of the access link or the device-to-device communication link. Numerous other aspects are described.