Abstract:
Systems and methods are disclosed that may communicate a control aggregate frame from a first wireless device to a second wireless device. A first wireless device may form a control aggregate frame by aggregating a plurality of first control frames into the control aggregate frame. The control aggregate frame may include a single media access control (MAC) header, a plurality of first aggregation fields, each storing a control frame subtype for a corresponding one of the plurality of first control frames, and a plurality of first payload fields, each storing a corresponding one of the plurality of first control frames. After generating the control aggregate frame, the first wireless device may transmit it to the second wireless device.
Abstract:
Systems and methods are provided for synchronizing a timing of one or more access points in an area. The systems and methods utilize a timestamp frame exchange between the one or more access points based on a timestamp refresh interval that is changed after each timestamp frame exchange is performed.
Abstract:
Systems, methods, and devices for communicating frames in a wireless network are disclosed. In one aspect, a method includes determining a protocol version field value for a frame control field of a wireless message, generating the frame control field, the frame control field generated to comprise a protocol version field having the protocol version field value, and a type field having a length based on the protocol version field value, generating the wireless message, the wireless message comprising a media access control header, the media access control header comprising the frame control field; and transmitting the wireless frame.
Abstract:
Systems and methods are disclosed that may ensure equal medium access between a first wireless device associated with a load based equipment (LBE) protocol and a number of second wireless devices associated with an enhanced distributed channel access (EDCA). The first wireless device may determine a level of contention associated with gaining access to a wireless medium, select a contention window size based, at least in part, on the determined level of contention, and select, for a medium access contention operation, a random back-off number from a range of numbers defined by the selected contention window size.
Abstract:
Techniques for supporting communication over an extended range in a wireless network are disclosed. In one aspect, a station sends multiple messages of a given type for different operating modes. These messages can be detected by stations with different capabilities, which may avoid collisions between stations. In one design, a first station receives a Request-to-Send (RTS) message from a second station having data to send. The first station sends a first Clear-to-Send (CTS) message and also a second CTS message in response to the RTS message. The second CTS message has an extended range as compared to the first CTS message. The first station thereafter (i) receives data sent by the second station in response to the second CTS message and (ii) sends an acknowledgement having an extended range.
Abstract:
Systems, methods, and devices for multicast communications including access identifiers are described herein. In some aspects, a fixed mapping from a multicast device identifier (e.g., multicast MAC address, multicast IP address) to a multicast access identifier is provided. In some aspects, a device may transmit a request to join a multicast group identified by a multicast access identifier. In some aspects, a device may receive an invitation to join a multicast group identified by a multicast access identifier.
Abstract:
Certain aspects of the present disclosure provide methods and apparatuses for determining a packet number for a packet, based on a transmit packet number (TPN), transmitted with the packet, a locally maintained base packet number (BPN), and a value of the TPN relative to one or more edges of a locally-maintained receive window. An example method generally includes receiving a packet having a transmitted packet number (TPN), maintaining a base packet number (BPN), maintaining a receive window defined by a first edge a and a second edge b, determining a value i of the TPN relative to at least one of the first edge a or the second edge b of the receive window, and calculating a packet number (PN) for the packet based on the TPN, the BPN, and the determination.
Abstract:
Techniques for proving enterprise mode security for relays are disclosed. For example, enterprise mode security based on IEEE 802.1x is provided for relays or other similar devices to extend the coverage of access point hotspots or other similar access point use cases. According to one aspect, a relay incorporates an authentication client associated with an authentication server. According to another aspect, a four address format is employed for tunneling messages via a relay between a station and an access point. According to another aspect, a cryptographic master key associated with an access point and a station is provided to a relay to enable the relay to be an authenticator for the station.
Abstract:
Apparatuses and methods are disclosed that may allow a wireless device to process an Ethertype data packet encapsulated in a frame based on whether the frame contains an Ethertype Packet Discrimination (EPD) indicator. The wireless device may receive the frame from another wireless device over a wireless network, and may detect a presence of the EPD indicator in the received frame. Then, the wireless device may identify a protocol type of the Ethertype data packet according to an EPD operation based on the presence of the EPD indicator, or may identify the protocol type of the Ethertype data packet according to an LPD operation based on an absence of the EPD indicator.
Abstract:
A system and method are disclosed that may increase the number of different element ID numbers that may be represented in an information element (IE) without significantly increasing the size of the IE and without altering existing parsers of various wireless devices. The IE may include a one-byte element ID field, a length field, an N-byte element ID extension field, and an information field 403. The one-byte element ID field may represent up to 28=256 possible values; 255 of these 256 possible values may represent unique element ID numbers, and one of these 256 possible values may be designated as a pointer to the N-byte element ID extension field, which may store up to 2N additional unique element ID numbers.