摘要:
A method for producing a group III nitride crystal in the present invention includes the steps of cutting a plurality of group III nitride crystal substrates 10p and 10q having a main plane from a group III nitride bulk crystal 1, the main planes 10pm and 10qm having a plane orientation with an off-angle of five degrees or less with respect to a crystal-geometrically equivalent plane orientation selected from the group consisting of {20-21}, {20-2-1}, {22-41}, and {22-4-1}, transversely arranging the substrates 10p and 10q adjacent to each other such that the main planes 10pm and 10qm of the substrates 10p and 10q are parallel to each other and each [0001] direction of the substrates 10p and 10q coincides with each other, and growing a group III nitride crystal 20 on the main planes 10pm and 10qm of the substrates 10p and 10q.
摘要:
The present method of manufacturing a GaN-based film includes the steps of preparing a composite substrate, the composite substrate including a support substrate in which a coefficient of thermal expansion in a main surface is more than 0.8 time and less than 1.2 times as high as a coefficient of thermal expansion of GaN crystal in a direction of a axis and a single crystal film arranged on a side of the main surface of the support substrate, the single crystal film having threefold symmetry with respect to an axis perpendicular to a main surface of the single crystal film, and forming a GaN-based film on the main surface of the single crystal film in the composite substrate. Thus, a method of manufacturing a GaN-based film capable of manufacturing a GaN-based film having a large main surface area and less warpage is provided.
摘要:
Silicon carbide single crystal is prepared. Using the silicon carbide single crystal as a material, a silicon carbide substrate having a first face and a second face located at a side opposite to the first face is formed. In the formation of the silicon carbide substrate, a first processed damage layer and a second processed damage layer are formed at the first face and second face, respectively. The first face is polished such that at least a portion of the first processed damage layer is removed and the surface roughness of the first face becomes less than or equal to 5 nm. At least a portion of the second processed damage layer is removed while maintaining the surface roughness of the second plane greater than or equal to 10 nm.
摘要:
A single crystal silicon carbide substrate has a 4H-polytype crystal structure, has with nitrogen atoms doped as a conduction impurity with an atomic concentration of more than 1×1016/cm3, and has a main surface containing a circle having a diameter of 5 cm. The single crystal silicon carbide substrate includes only one of a facet region and a non-facet region. Thus, variation in nitrogen atom concentration in the single crystal silicon carbide substrate can be suppressed.
摘要:
The present GaN substrate can have an absorption coefficient not lower than 7 cm−1 for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, an absorption coefficient lower than 7 cm−1 for at least light having a wavelength not shorter than 500 nm and not longer than 780 nm, and specific resistance not higher than 0.02 Ωcm. Here, the absorption coefficient for light having a wavelength not shorter than 500 nm and not longer than 780 nm can be lower than 7 cm−1. Thus, a GaN substrate having a low absorption coefficient for light having a wavelength within a light emission wavelength region of a light-emitting device and specific resistance not higher than a prescribed value and being suitable for the light-emitting device is provided.
摘要:
The present invention is to provide GaN crystal growing method for growing a GaN crystal with few stacking faults on a GaN seed crystal substrate having a main surface inclined at an angle of 20° to 90° from the (0001) plane, and also to provide a GaN crystal substrate with few stacking faults. A method for growing a GaN crystal includes the steps of preparing a GaN seed crystal substrate 10 having a main surface 10m inclined at an angle of 20° to 90° from a (0001) plane 10c and growing a GaN crystal 20 on the GaN seed crystal substrate 10. The GaN seed crystal substrate 10 and the GaN crystal 20 have a difference in impurity concentration of 3×1018 cm−3 or less.
摘要:
A MOSFET, which is a semiconductor device allowing for reduced on-resistance while restraining stacking faults from being produced due to heat treatment in a device manufacturing process, includes: a silicon carbide substrate; an active layer made of single-crystal silicon carbide and disposed on one main surface of the silicon carbide substrate; a source contact electrode disposed on the active layer; and a drain electrode formed on the other main surface of the silicon carbide substrate. The silicon carbide substrate includes: a base layer made of silicon carbide; and a SiC layer made of single-crystal silicon carbide and disposed on the base layer. Further, the base layer has an impurity concentration greater than 2×1019 cm−3, and the SiC layer has an impurity concentration greater than 5×1018 cm−3 and smaller than 2×1019 cm−3.
摘要:
The present invention is to provide a method for growing a group III nitride crystal that has a large size and has a small number of pits formed in the main surface of the crystal by using a plurality of tile substrates. A method for growing a group III nitride crystal includes a step of preparing a plurality of tile substrates 10 including main surfaces 10m having a shape of a triangle or a convex quadrangle that allows two-dimensional close packing of the plurality of tile substrates; a step of arranging the plurality of tile substrates 10 so as to be two-dimensionally closely packed such that, at any point across which vertexes of the plurality of tile substrates 10 oppose one another, 3 or less of the vertexes oppose one another; and a step of growing a group III nitride crystal 20 on the main surfaces 10m of the plurality of tile substrates arranged.
摘要:
A method for manufacturing a silicon carbide substrate includes the steps of: preparing a base substrate made of silicon carbide and a SiC substrate made of single-crystal silicon carbide; and connecting the base substrate and SiC substrate to each other by forming an intermediate layer, which is made of carbon that is a conductor, between the base substrate and the SiC substrate.