Abstract:
Methods and a system for proof testing brittle components of electronic devices are disclosed. The method may include positioning the brittle component relative to a probe of a testing system, contacting the probe to a surface of the brittle component at a first location, and applying a first force at the first location using the probe to create a first localized tensile band below the surface of the brittle component. The method may also include contacting the probe to the surface of the brittle component at a second location, distinct from the first location, and applying a second force at the second location using the probe to create a second localized tensile band below the surface of the brittle component.
Abstract:
Electronic devices including a display layer and a cover layer including a foldable region are disclosed herein. The display layer and the cover layer are configured to be moved between a folded configuration and an unfolded configuration by bending the cover layer along the foldable region. Methods of making a cover layer for an electronic device are also disclosed.
Abstract:
Various sapphire and laminate structures are discussed herein. One embodiment may take the form of a sapphire structure having a first sapphire sheet with a first sapphire plane type forming the major surface and a second sapphire sheet having a second different sapphire plane type forming the major surface. The first and second sapphire sheets are fused together to form the sapphire structure.
Abstract:
A property-enhanced cover sheet, and methods for forming a property-enhanced cover sheet, for a portable electronic device are disclosed. A property-enhanced cover sheet is formed by thermoforming a glass sheet into a specified contour shape while modifying one or more properties of the glass. Other property-enhanced sheets can be formed by layering two or more glass sheets having different material properties, and then thermoforming the layered sheets into a required contour shape. Property enhancement for a cover sheet includes, hardness, scratch resistance, strength, elasticity, texture and the like.
Abstract:
A method of manufacturing a housing of an electronic device includes determining a sintering profile configured to produce a selected color at a selected depth within a wall of the housing, sintering a ceramic housing precursor in accordance with the determined sintering profile, thereby forming the housing, and removing material from the housing up to the selected depth.
Abstract:
Systems and method for creating crystalline parts having a desired primary and secondary crystallographic orientations are provided. One embodiment may take the form of a method of manufacturing a part having a crystalline structure. The method includes melting aluminum oxide and drawing the melted aluminum oxide up a slit. Additionally, the method includes orienting the seed crystal relative to a growth apparatus such that a crystalline structure grows having a desired primary plane and a desired secondary plane orientation. Moreover, the method includes pulling the crystal as it forms to create a ribbon shaped crystalline structure and cutting a part from the crystalline structure.
Abstract:
A layered coating for a sapphire component is described herein. The sapphire component comprises one or more layers of alumina adhered to the surface of a sapphire member. At least the first layer of alumina adheres to the surface of the sapphire member filling all defects in the surface forming a pristine new layer that also provides isolation from damage.
Abstract:
A ceramic material having an electronic component embedded therein, and more particularly to a sapphire surface having an electrically energized component embedded within. In some embodiments, the sapphire surface may take the form of a portion of a housing for an electronic device. Since sapphire may be substantially transparent, it may form a cover glass for a display within or forming part of the electronic device, as one example. The cover glass may be bonded, affixed, or otherwise attached to a remainder of the housing, thereby forming an enclosure for the electronic device.
Abstract:
A cover glass including a center region and an outer region abutting the center region at an interface. The interface inhibits crack propagation from the outer region to the center region and vice versa. In another embodiment the cover glass may include mitigation voids introduced into the cover glass to inhibit crack propagation. The interface may be formed from the mitigation voids.
Abstract:
Systems and methods for polishing a ceramic component using a laser. The ceramic component may include a planar region that is polished using, for example, a mechanical or chemical mechanical polishing operation to produce a polished face. A contoured region that is adjacent to the planar region may be irradiated using a laser to heat the ceramic material within the contoured region. The irradiation may reduce the surface roughness of the contoured region to produce a polished surface. The ceramic component may be heated prior to being irradiated with the laser to reduce thermal gradients within the ceramic component.