Abstract:
A method and apparatus are provided to controllably reduce power of a laser projection display (LPD) in response to detecting a variation in a viewing surface. During the operation of the LPD, a controller 142 monitors laser light being reflected from the viewing surface. Since the controller 142 “knows” the amount of power that the LPD is being instructed to deliver, it may compare the known power to the reflected laser light to determine if a foreign object may be in the path of the laser light, and therefore, affecting the magnitude of the laser light. The controller 142 responds to detecting such an event by reducing power to the lasers.
Abstract:
An arrangement for determining light beam position in an electro-optical reader, image projector and like devices includes a drive for moving a scanning light beam at a scan frequency across a target as a scan line, and an electro-optical feedback assembly operatively connected to the drive, for optically detecting scan line position during beam movement, and for generating a feedback signal at the scan frequency, the feedback signal being indicative of the scan line position. A feedback coil in the drive is eliminated to avoid electromagnetic coupling between multiple coils in the drive.
Abstract:
A method and apparatus are provided to controllably reduce power of a laser projection display (LPD) in response to detecting a variation in a viewing surface. During the operation of the LPD, a controller 142 monitors laser light being reflected from the viewing surface. Since the controller 142 “knows” the amount of power that the LPD is being instructed to deliver, it may compare the known power to the reflected laser light to determine if a foreign object may be in the path of the laser light, and therefore, affecting the magnitude of the laser light. The controller 142 responds to detecting such an event by reducing power to the lasers.
Abstract:
A portable instrument incorporates an electro-optical assembly for reading indicia during a reading mode, and for projecting a bit-mapped image during a display mode. A manually operable switch on the instrument is disposed for selecting one of the modes. The image is formed by pulsing a laser at selected times on selected scan lines.
Abstract:
A laser projection device (LPD) suitable for displaying color images is disclosed. The LPD is used to excite various photoluminescent materials located on a display screen so as to produce multi-color displays. Additionally, the screen may be movably mounted so as to reduce laser speckling.
Abstract:
An arrangement for and a method of collecting and displaying information in real time along a line of sight from a human operator to remote targets located at variable distances therefrom and identifiable by machine-readable indicia. A two-dimensional image is automatically projected along the line of sight on the target alongside the indicia while maintaining the image size relatively constant over an extended range of working distances.
Abstract:
An arrangement for and method of projecting an image on a viewing surface include sweeping a light beam along a plurality of scan lines that extend over the viewing surface, and selectively illuminating parts of the image at selected positions of the light beam on the scan lines. The viewing surface can be remote from a housing supporting the arrangement, or can be located on the housing.
Abstract:
An integrated optical module for an optical scanner has a lens spaced from a vertical-cavity surface-emitting laser (VCSEL) by a spacer of defined dimensions. The module, in an alternative embodiment, includes a wafer frame, a suspended mirror mounted for oscillation on the frame, a wafer substrate bonded beneath the frame and a wafer cover bonded above the frame. The cover includes a mirror travel stop to protect the mirror against shocks. A VCSEL mounted to the wafer cover produces a beam which is shaped and deflected by a diffractive optical element onto the oscillating mirror. The reflected beam passes out of the module toward an indicia to be read. Large numbers of such devices may be fabricated relatively cheaply using wafer-scale processing and assembly technology. Three large wafers are fabricated corresponding respectively to arrays of substrates, frames and covers. The large wafers are bonded together in a sandwich arrangement, and are then diced to produce the individual scan modules. The modules may provide either one-dimensional or two-dimensional scanning.
Abstract:
An optical scanner such as a bar code scanner has a window comprising a holographic optical element through which both the outgoing scanning beam and the returned reflective light passes. The frequency distribution of the element may be chosen to achieve certain desirable characteristics, for example the removal of the dead zone immediately in front of the scanner and control of the beam profile and field of view. The element may be divided up into several separate zones or regions one of which is adapted to control the outgoing beam and the other of which is adapted to receive the incoming reflected light and to focus it onto a photodetector.
Abstract:
A system for transferring data between a centrally located site and a portable communications terminal via a telephone network, the site having associated therewith a look up table containing plurality of data records correlating to items disposed at a retail establishment, wherein each of the items has associated therewith a bar code encoded with the indicia unique to each item, with each of the bar coded indicia corresponding to a particular record in the table, the data containing at least a portion of said record.