Abstract:
Provided is an image scanning unit which makes it possible to improve scanning accuracy while also making the overall body thinner by appropriately positioning a plurality of reflection members within an effective space in a carriage frame without wasting space. An image scanning unit, wherein a frame is divided into at least two spaces facing an irradiation surface, a first accommodation unit for accommodating a light source unit is formed in one of the spaces, a second accommodation unit for accommodating at least one reflection member is formed in the other adjacent space, a first reflection member for initially receiving light reflected from the irradiation surface is positioned at the side opposite the irradiation surface with the first accommodation unit positioned therebetween, and a light-shielding member is provided between the first reflection member and the reflection member positioned in the other space and prevents light that has strayed from a scanning light path from the first reflection member from being incident on the reflection member in the other space.
Abstract:
A lens array unit includes first and second lens arrays cooperative with each other. The first lens array is provided with a plurality of first convex lenses and a first transparent holder formed integral with the first lenses. Each of the first lenses has first and second lens surfaces. The second lens array is provided with a plurality of second convex lenses and a second transparent holder formed integral with the second lenses Each of the second lenses has third and fourth lens surfaces. The second lens array is attached to the first lens array so that the third lens surfaces face the second lens surfaces. The lens array unit further includes a light shield mounted on the first lens array. The light shield is formed with a plurality of through-holes each facing the relevant one of the first lens surfaces.
Abstract:
There is a problem that the contact-type image sensor, for adoption in an image input/output apparatus to input/output the image of a large-sized document, such as A0 or A1 size, is weak in lengthwise rigidity and readily deflected at its lengthwise center by its own weight. Accordingly, by attaching a deformation rectifier to the image sensor in a lengthwise direction thereof, the contact type image sensor is reinforced in lengthwise rigidity. The deformation rectifier reinforces the rigidity of the contact type image sensor, thereby preventing the contact type image sensor from deflecting vertically relative to its lengthwise direction and keeping constant the focal length between the surface of the document to be read and the sensor IC.
Abstract:
A picture reading apparatus with flaring light elimination capability, which includes a light source for emitting light, a contact glass with which a document to be scanned comes in contact, a lens array in which a plurality of lenses for converging the light from the light source are arranged at equal intervals therebetween, a roof mirror array in which a plurality of roof-like reflection surfaces are arranged corresponding to the plurality of lenses, a restricting plate for eliminating undesired light between adjacent lenses of the lens array, a housing in which the roof mirror array and the lens array are accommodated, a sensor, and a separation mirror. The apparatus further includes a light shield layer provided on the contact glass, at a portion other than a reading portion through which the light from the light source passes to scan the document, for eliminating undesired light, other than the converged light effective in supplying a picture signal.
Abstract:
In an image sensor, a light receptor has a shield film formed substantially centrally in a light receiving area on each of a plurality of light receiving devices, except those disposed at opposite ends of each sensor IC, for adjusting the quantity of light received by each light emitting device. The result is that fluctuation of sensitivity and resolution failure, which might occur during the production of sensor ICs to be used as the light receptor, can be eliminated.
Abstract:
A semiconductor device includes a first trans-impedance amplifier, a second trans-impedance amplifier, a peak hold circuit, a comparator and a threshold current setting circuit. The first trans-impedance amplifier converts a first current signal generated by a first photodiode, into which an optical signal is input, into a first voltage signal. The second trans-impedance amplifier converts a second current signal generated by a second photodiode, to which an optical signal is blocked, into a second voltage signal. The peak hold circuit holds the peak value of the first voltage signal. The comparator outputs a pulse on the basis of the first and second voltage signals. The threshold current setting circuit draws out a threshold current.
Abstract:
A semiconductor device includes a first trans-impedance amplifier, a second trans-impedance amplifier, a peak hold circuit, a comparator and a threshold current setting circuit. The first trans-impedance amplifier converts a first current signal generated by a first photodiode, into which an optical signal is input, into a first voltage signal. The second trans-impedance amplifier converts a second current signal generated by a second photodiode, to which an optical signal is blocked, into a second voltage signal. The peak hold circuit holds the peak value of the first voltage signal. The comparator outputs a pulse on the basis of the first and second voltage signals. The threshold current setting circuit draws out a threshold current.
Abstract:
There is a problem that the contact-type image sensor, for adoption in an image input/output apparatus to input/output the image of a large-sized document, such as A0 or A1 size, is weak in lengthwise rigidity and readily deflected at its lengthwise center by its own weight. Accordingly, by attaching a deformation rectifier to the image sensor in a lengthwise direction thereof, the contact type image sensor is reinforced in lengthwise rigidity. The deformation rectifier reinforces the rigidity of the contact type image sensor, thereby preventing the contact type image sensor from deflecting vertically relative to its lengthwise direction and keeping constant the focal length between the surface of the document to be read and the sensor IC.
Abstract:
Light-shielding layers are adhered to the lower surface of a glass plate, spaced apart from each other and defining a slit having a width of L. An array of rod lenses is located below the glass plate, such that the optical axes of the lenses pass through the slit. The lower surface of the glass plate is generally covered, and exposed via the slit only. Hence, the leakage of lights reflected from points near a reading position into each photoelectric conversion element is minimized, whereby the element outputs a pixel signal faithfully representing that part of the image which is located at the reading position.
Abstract:
An image reader is provided, which includes a housing, a document table, a reading unit disposed between the housing and the document table and configured to read an image of a document sheet on the document table, and a carriage configured to hold the reading unit and move along a moving direction, the carriage including a protruding portion formed to protrude toward the reading unit, on a bottom surface of the carriage that faces a lower surface of the reading unit.