Abstract:
A system and method for linearizing a power amplifier using digital predistortion technique is provided including processing circuitry, the processing circuitry configured to apply a digital predistortion function based on a weighted static polynomial function, a weighted dynamic polynomial function and a threshold parameter which splits the nonlinear transfer characteristics of the device under test into a region where the static nonlinearity predominates and a region where the dynamic distortions predominate.
Abstract:
A system and method for linearizing a power amplifier using digital predistortion technique is provided including processing circuitry, the processing circuitry configured to apply a digital predistortion function based on a weighted static polynomial function, a weighted dynamic polynomial function and a threshold parameter which splits the nonlinear transfer characteristics of the device under test into a region where the static nonlinearity predominates and a region where the dynamic distortions predominate.
Abstract:
Signal modulation apparatus for applying a modulation signal to a carrier signal, the apparatus comprising: an amplitude modulator for modulating the amplitude of the carrier signal in accordance with a control signal; first mixing means for mixing together fractions of the carrier signal before and after action of the amplitude modulator to produce a first detection signal indicative of the amplitude modulation applied by the amplitude modulator; and detection means for comparing the control signal with a first detection signal to evaluate distortion in the first detection signal as compared with the control signal.
Abstract:
A high frequency SSB radio transmitter has an envelope amplitude modulator for varying the envelope of an r.f. signal source based on an error signal from envelope detectors detecting the envelope of the input and output waveform. It also has a first phase modulator in a main feedback loop for varying the phase of the input waveform based on differences detected in a phase detector between the instantaneous phase of the input and output r.f. signal. To overcome the problem of spurious outputs from the phase detector resulting from the cross-over points of the SSB waveform when there are carrier breaks and other problems, a subsidiary, phase lock loop feeds a signal derived from the error signal to a second phase modulator to tend to hold the inputs to the phase detector in such a phase relationship that the output is zero. To cope with large phase shift errors between the input waveform and the output which result when the power amplifier changes frequency or temperature variations e.g. at the antenna, a broadband phase shifting network is brought into operation when a dual voltage comparator senses that the signal fed to the second modulator passes a value corresponding to its extremes of adjustment.
Abstract:
The present invention relates to a device for correcting the phase induced by the class C operation of a solid state amplifier. It is applied in the field of the manufacture of pulse radar transmitters. Solid state amplifiers are prone to generating phase variations. The invention relates to a measurement and correction loop which allows the real time elimination of phase variations due to heating up.
Abstract:
A single or multistage signal predistorter includes an input coupled to receive an information signal comprising input samples and an output coupled to the high power amplifier, the signal predistorter configured to receive an input sample, generate a distortion sample based on an estimate of nonlinearity of the high power amplifier at an operating saturation level, modify the input sample with a correction term to generate a predistortion signal, wherein the correction term is proportional to the distortion sample, and further wherein the predistortion signal comprises the information signal modified to account for nonlinearities in the high power amplifier.
Abstract:
A distortion compensation apparatus includes a pre-distorter, a gain control unit, and a learning unit. The pre-distorter adds distortion according to compensation coefficients to individual input signals prior to the input signals being input to a power amplifier. The gain control unit applies gain control to individual feedback signals fed back from the power amplifier according to a maximum level of the feedback signals within a time frame. The learning unit updates the compensation coefficients used by the pre-distorter, using the feedback signals subjected to the gain control by the gain control unit.
Abstract:
Signal modulation apparatus for applying a modulation signal to a carrier signal, the apparatus comprising: an amplitude modulator for modulating the amplitude of the carrier signal in accordance with a control signal; first mixing means for mixing together fractions of the carrier signal before and after action of the amplitude modulator to produce a first detection signal indicative of the amplitude modulation applied by the amplitude modulator; and detection means for comparing the control signal with a first detection signal to evaluate distortion in the first detection signal as compared with the control signal.
Abstract:
A phase noise correction device having a function for accurately detecting a phase noise component and capable of reducing a load on a reception device is provided. A phase noise correction device for correcting a phase noise generated in a local oscillator includes: a division section that divides a signal generated in the local oscillator; a reference signal generation section that generates a signal of the same frequency as that of the divided signal; a phase difference detection section that detects a phase difference between the divided signal and the generated reference signal; and a phase noise correction section that gives a phase rotation to a baseband signal in the direction that cancels the phase noise according to the detected phase difference as a phase noise component.
Abstract:
According to the invention, a Cartesian control means (16) comprising a phase rotator (50) and a phase adjuster (52) is provided. With a method and a device according to the invention, a system is provided that is unconditionally stable with respect to non-phase alignment, regardless of input power changes, temperature and component ageing. No certain conditions need to be placed upon the control system to ensure stability, i.e. the system is non-obtrusive and requires no off-line calibration. The inclusion of the phase rotator (50) and phase adjustment techniques into the Cartesian control system makes this possible.