Abstract:
One inductive sensor is configured to maintain a fixed frequency in a resonant circuit. One apparatus includes an inductance-to-digital converter (LDC). The LDC includes a digital filter to measure an inductance change of a sensor and convert the inductance change to a digital value. The LDC further includes a digital control loop to maintain a fixed frequency in the sensor. The sensor forms an oscillator in the digital control loop. An output of the digital control loop is representative of the inductance change of the sensor.
Abstract:
The present invention provides a method and an apparatus for controlling the wireless induction power supply. The apparatus comprises a transmitter control circuit and a receiver control circuit. The method comprises generating a plurality of switching signals for switching a transmitter winding and generating a power; detecting a level of a transmitter signal from the transmitter winding; and controlling a switch to deliver the power from a receiver winding to a load. The receiver winding is coupled to receive the powerfrom the transmitter winding. The switching signals will be disabled if the level of the transmitter signal is not higher than a threshold over a first period or the level of the transmitter signal is higher than a high-threshold over a second period. Accordingly, the method and the apparatus according to the present invention have the foreign object detection (FOD) function for the safety.
Abstract:
The present invention relates to a portable detector (1) for metal detection, the detector including: a head (11) extending longitudinally and comprising an inductive transducer for measuring a variation in its inductance and/or for measuring parasite currents caused in the metals to be detected, and a body (13) including a controller programmed to control the activation or deactivation of a standby function of the detector, and a sensor for measuring displacement of the detector (1), and/or for measuring the orientation of the detector (1), the controller (20) controlling activation of the standby function as a function of signals received: of the inductive transducer on the one hand, and of the sensor on the other hand.
Abstract:
An eddy current type sensor for detecting a conductor includes a LC circuit and an oscillator. The LC circuit has a coil and a capacitor connected in parallel with the coil. The oscillator supplies an alternating current of a predetermined oscillation frequency to the LC circuit. A signal voltage outputted from the LC circuit has a first voltage when the distance between the coil and the conductor is minimum and a second voltage when the distance between the coil and the conductor is maximum. A voltage difference between the first and second voltages has a first difference at a first temperature and has a second difference at a second temperature. The first and second differences become equal to each other at a first frequency and a second frequency. The oscillation frequency is set close to the first frequency or the second frequency.
Abstract:
A high frequency oscillation type proximity switch, comprising: an oscillation circuit having a first resonant frequency; a tank circuit connected in a positive feedback path of the oscillation circuit and including an LC resonant circuit having a second resonant frequency slightly different from the first resonant frequency; and a comparator circuit which discriminates the amplitude of an oscillation output of the oscillating circuit at a predetermined threshold level; the comparator producing a detection output signal when a nonmagnetic metallic object is brought to a certain proximity of a coil included in the LC resonant circuit and a level of the oscillation has thereby changed by a certain amount as a result of a change in the susceptance of the coil. Since the approach of a magnetic object increases the loss of the coil whereas the approach of a nonmagnetic metallic object increases the susceptance of the coil, it is possible to detect magnetic objects alone, nonmagnetic metallic objects alone, or both magnetic objects and nonmagnetic metallic objects alike by appropriately selecting the resonant frequencies of the oscillation circuit, and the tank circuit and the threshold level of the comparator circuit.
Abstract:
An inductive proximity switch in which a quartz oscillator is connected to a sensor resonant circuit having a sensor coil which is adapted to be influenced by the approach of electrically conductive nonmagnetic nonferrous metal (NF) objects and ferromagnetic metal (FE) objects. A detecting circuit detects when the sensor resonant circuit has an impedance which is indicative of either an NF object or an FE object at a predetermined switching distance from the sensor coil, thus causing the proximity switch to exhibit the same switching distance for both NF and FE objects. The oscillator frequency and the impedance of the sensor resonant circuit at the oscillator frequency are respectively set to be equal to a critical frequency and a critical impedance value at a critical response point defined by a point where impedance-frequency characteristic curves of the sensor resonant circuit under the influence of NF objects and FE objects at the predetermined switching distance intersect. The oscillator frequency and the natural resonant frequency of the sensor resonant circuit when it is uninfluenced by an approaching object are set to be slightly different from each other.
Abstract:
An apparatus and method for non-invasive sensing of bone healing is disclosed. The apparatus and method uses an electromagnetic field to measure impedance changes at and about the bone fracture site during the healing process. The impedance change at the fracture site is a direct indication of the mechanical strength of the fracture site. A multi-coil sensor array is taught, which may be sutured to the patient's skin or mounted onto a plug that is inserted through a window in the cast.
Abstract:
A device having a detector element for detecting small particles of metal moving in a stream of particulate matter, such as tobacco filler. The detector element is a coil through which the stream passes. The coil is the inductor of an oscillating circuit and is also part of the negative feedback loop of an operational amplifier. Inductance changes caused by the presence of metal become impedance changes that alter the amplifier gain, changing the amplitude of the AC component of an alternating current output signal. The signal peaks are shifted further, increasing detector amplitude, by coupling the signal through a capacitor to a source of potential so that the DC component of the signal also changes as the change in inductance allows current to flow through the capacitor.
Abstract:
An apparatus and method for non-invasive sensing of bone healing is disclosed. The apparatus and method uses an electromagnetic field to measure impedance changes at the bone fracture site during the healing process. The impedance change at the fracture site is a direct indication of the mechanical strength of the fracture site.
Abstract:
A wire sensing coil is sealed in the tip of an elongate, rigid, plastic probe, and is connected by a coaxial cable releasably to a housing containing a fixed frequency, crystal-controlled oscillator, the output of which is applied through a high impedance resistor and the cable to the coil. The number of turns in the coil and the cable length are carefully selected so that the coil remains tuned to the frequency of the oscillator, except when the tip of the probe approaches a metal object, at which time the voltage drop across the coil decreases. The housing also contains an audible alarm, and a sensing circuit which detects the voltage drop across the coil, and which energizes the alarm when the voltage across the coil drops below a preset or predetermined level. The housing also contains a rechargable battery for supplying power to the oscillator and alarm circuits, and a recharging circuit for recharging the battery. A manually operable switch on the housing connects the battery to the oscillator when the switch is in its ON position, and connects the recharging circuit to the battery when in its OFF position.