Abstract:
In a production method of an elastic composite sheet, the elastic member does not break when the elastic member, in a stretched state, is bonded to a base material sheet; an elastic composite sheet and a disposable wearable article use the elastic composite sheet. A strip-shaped or string-shaped elastic member composed mainly of a thermoplastic elastic resin is stretched in the longitudinal direction of the elastic member. The stretched elastic member is placed over a first base material sheet such that the main surface of the first base material sheet contacts the elastic member. In this state, the elastic member and the first base material sheet are bonded in a first position that overlaps the elastic member seen from a direction perpendicular to the main surface of the first base material sheet and that is away from the edges of the elastic member.
Abstract:
A stretchable sheet 10 includes: a plurality of attached portions 3 spaced apart from each other in the direction of stretch Df, wherein the first surfaces 1f and 2f of a pair of sheets 1 and 2 are attached to each other by being welded without using an adhesive, at the attached portions 3, the attached portions 3 hold elastic members F, and the attached portions 3 extend in a direction Dp crossing the direction of stretch Df of the elastic members F; and a plurality of folds P that appear between the attached portions 3 while the elastic members F are shrunk, wherein the attached portions 3 include: a plurality of strongly-attached portions 3s arranged on opposite sides of each elastic member F in the crossing direction Dp; and a plurality of weakly-attached portions 3w arranged between adjacent elastic members F and between adjacent strongly-attached portions 3s.
Abstract:
An elastic resin material having a thermoplastic elastic resin as a main component is heated and melted, and the elastic resin material is discharged in a film or a linear shape from a discharge mechanism to form a film-shape or a linear-shape intermediate product. At a temperature above the temperature region at which the elastic resin material elastically deforms, extending is performed until the thickness or width of the film-shape intermediate product or the thickness of the linear-shape intermediate product assumes a prescribed value; with a cooling roller, the intermediate product is cooled to the temperature region at which the elastic resin material elastically deforms, and the intermediate product is hardened, forming a film-shape or linear-shape elastic member. The elastic member is stretched with a stretch roller to a prescribed stretching ratio, and the stretched elastic member is laminated on and bonded to a first base material sheet.
Abstract:
A method includes distributing a powder onto a first sheet, periodically closing a distribution port by a first opening-closing portion, and periodically closing the distribution port by a second opening-closing portion in the same cycle period as that of the first opening-closing portion and at a timing later than that of the first opening-closing portion. The method also includes moving the second opening-closing portion such that it extends from an upstream-side edge of the first opening-closing portion toward an upstream side of a movement direction, during a time period during which the upstream-side edge of the first opening-closing portion overlaps the distribution port. Further, the method includes setting a difference between timings at which the first and second opening-closing portion overlap the distribution port, respectively.
Abstract:
An ultrasonic welding device includes a rotary support mechanical assembly rotatable about a rotation axis and operable to support a sheet over a circumference centered on the rotation axis, the sheet being continuously supplied; a horn and an anvil attached to the rotary support mechanical assembly to thereby revolve about the rotation axis and sandwich the sheet supported over the rotary support mechanical assembly to weld the sheet; a cam drum and a cam follower for driving the anvil in such a manner that the anvil moves relative to the horn; a holding member body; and a power transmission mechanism for distributing a power generated by the cam and the cam follower in such a manner the power is transmitted to the anvil and holding member body in opposite directions.
Abstract:
The displacement mechanism includes: an urging mechanism that urges an anvil roller toward an ultrasonic horn in such a manner that output surfaces and a welding surface move closer in the normal direction thereof; and a pressed member that has guide surfaces against which the outer surface of the anvil roller, positioned within non-welding areas, are pressed by an urging force of the urging mechanism, the pressed member being fixed to a sheet holding roller in a state where a pressed surface is disposed within the width-direction range of a slit. In response to the movement of the anvil roller from a welding area to the non-welding areas, the guide surfaces of the pressed member guide the anvil roller in a direction in which the output surfaces and the welding surface move away from each other.
Abstract:
A layered body containing continuous sheets is thermally fused when passing through a space between an anvil roll and an energy applying device to form a layered sheet. A nip stage for sandwiching the layered body is provided upstream of the space between the anvil roll and the energy applying device. The nip stage includes at least one displacement member which is displaced in accordance with the thickness of the layered body sandwiched by the nip stage. Whether the thickness of the layered body sandwiched by the nip stage has deviated from a reference range is detected on the basis of the displacement of the displacement member, and when it is detected that the thickness has deviated from the reference range, the energy applying device is caused to retreat in a direction going away from the anvil roll.
Abstract:
A manufacturing method including a first conveying step of conveying the sheet in a lateral or oblique lateral direction along a sheet pass line below the discharge port; a receiving step of receiving a tip part of the film raw material with the sheet on the sheet pass line, the tip part being discharged and hanging down from the discharge port; a second conveying step of conveying the sheet and the film raw material after the tip part overlaps the sheet on the sheet pass line, the second conveying step conveying the sheet and the film raw material in a mutually overlapping state along the sheet pass line; and an introducing step of introducing the sheet and the film raw material in the mutually overlapping state to the joining part from the sheet pass line.
Abstract:
Provided is a lightweight anvil roller and an ultrasonic welding device provided therewith. The anvil roller has: a supported section that is rotatably supported by a holding mechanism via a rotary shaft in such a manner that the anvil roller can come into rolling contact with a sheet; an outer peripheral section having a welding surface over which the sheet is welded between the outer peripheral section and an ultrasonic horn during rolling contact with the sheet; a thin section that is formed between the supported section and the outer peripheral section in such a manner that the thickness of the thin section is smaller than the thickness of the outer peripheral section in the axial direction of the rotary shaft; and a vibration proof member provided on the thin section.
Abstract:
Provided is a lightweight anvil roller and an ultrasonic welding device provided therewith. The anvil roller has: a supported section that is rotatably supported by a holding mechanism via a rotary shaft in such a manner that the anvil roller can come into rolling contact with a sheet; an outer peripheral section having a welding surface over which the sheet is welded between the outer peripheral section and an ultrasonic horn during rolling contact with the sheet; a thin section that is formed between the supported section and the outer peripheral section in such a manner that the thickness of the thin section is smaller than the thickness of the outer peripheral section in the axial direction of the rotary shaft; and a vibrationproof member provided on the thin section.