摘要:
A fluid dynamic-pressure bearing includes a rotatable shaft, a hub, a fixed portion, and a lubricating liquid. The hub includes a hub thrust bearing surface extending from the shaft outwardly in a radial direction and an annular surface. The fixed portion includes a fixed-portion upper thrust bearing surface facing the hub thrust surface and a flange surface facing the annular surface. The hub thrust bearing surface, the fixed-portion upper thrust bearing surface, and the lubricating liquid arranged therebetween form together an upper thrust dynamic-pressure bearing. The annular surface and the flange surface define an annular gap therebetween. An axial dimension of the annular gap is larger than a total of an axial dimension of an upper thrust gap between the hub thrust bearing surface and the fixed-portion upper thrust bearing surface and an average depth of upper thrust dynamic-pressure generating grooves of the upper thrust dynamic-pressure bearing.
摘要:
Low-profile spindle motor whose entire shaft length is utilized to configure, along an encompassing sleeve, a radial dynamic-pressure bearing section. One end of the shaft is unitary with the rotor, and a cover member closes the other end. Between the sleeve upper-end face and the rotor undersurface a thrust bearing section is configured. Micro-gaps are formed continuing between the sleeve upper-end face and the rotor undersurface; the sleeve inner-circumferential surface and the shaft outer-circumferential surface; and the cover member inner face and the shaft end face, where an axial support section is established. Oil continuously fills the micro-gaps, configuring a full-fill hydrodynamic bearing structure. Hydrodynamic pressure-generating grooves in the radial bearing section are configured either so that no axial flow, or so that a unidirectional flow that recirculates from one to the other axial end of the radial bearing section through a communicating pathway is induced in the oil.
摘要:
In a spindle motor utilizing dynamic-pressure bearings having a full-fill structure, a bearing configuration that balances and sustains at or above atmospheric pressure the internal pressure of the bearing oil. Thrust and radial bearing sections are configured within oil-filled bearing clearances in between the rotor, the shaft, and a shaft-encompassing hollow bearing member. A communicating passage one end of which opens on, radially inwardly along, the thrust bearing section is formed in the bearing member. Either axial ends of the bearing clearance in between the bearing member and shaft communicate through the passage. The communicating passage enables the oil to redistribute itself within the bearing clearances. Pressure difference between the axial upper and lower ends of the oil retained in between the bearing member and the shaft is compensated through the communicating passage, preventing incidents of negative pressure within the oil and of over-lift on the rotor.
摘要:
In a spindle motor utilizing dynamic-pressure bearings having a full-fill structure, a bearing configuration that balances and sustains at or above atmospheric pressure the internal pressure of the bearing oil. Thrust and radial bearing sections are configured within oil-filled bearing clearances in between the rotor, the shaft, and a shaft-encompassing hollow bearing member. A communicating passage one end of which opens on, radially inwardly along, the thrust bearing section is formed in the bearing member. Either axial ends of the bearing clearance in between the bearing member and shaft communicate through the passage. The communicating passage enables the oil to redistribute itself within the bearing clearances. Pressure difference between the axial upper and lower ends of the oil retained in between the bearing member and the shaft is compensated through the communicating passage, preventing incidents of negative pressure within the oil and of over-lift on the rotor. And an annular protruding portion is formed on at least one of the end face of the bearing member and the flat face of the rotor at radially inward portion of the thrust bearing section.
摘要:
A spindle motor comprises a rotary sleeve; a rotor hub which is integrally rotated with the rotary sleeve; a stationary sleeve; and a stationary support extending upwardly from the stationary part, the rotary sleeve being fitted onto the outer peripheral surface of the stationary support, and radial and thrust hydrodynamic bearings being provided on the relative sliding surfaces of both rotary sleeve and stationary support. A pair of annular grooves which partially overlap each other in the axial direction are peripherally provided on the rotary sleeve and stationary support, thereby providing a labyrinth chamber to suppress the outflow of the lubricant.
摘要:
Small-size, small-height fluid dynamic-pressure bearing device that causes a low shaft loss and is less prone to troubles such as shortage and leakage of lubricating liquid. A thrust dynamic-pressure bearing is formed at an inner position and a region having a slightly-widened gap is provided outside of the thrust dynamic-pressure bearing to retain the lubricating liquid therein. Further, an oil circulating path is communicated with the region having a slightly widened gap. The gap of this region is set to be greater than the gap at the thrust dynamic-pressure bearing portion by the value of the depth of dynamic-pressure generating grooves. The region having a widened gap may be provided with rows of grooves for stirring-up lubricating oil towards the center.
摘要:
The present invention relates to a hydrodynamic bearing supporting a shaft and a sleeve so as to relatively rotate with respect to a rotation axis. In accordance with one example of the present invention, there is provided a hydrodynamic bearing in which a capillary seal portion is formed continuously in a bearing portion having a lubricating oil retained in a micro gap as a working fluid. The capillary seal portion is provided with a first capillary seal portion having a first radial gap, a dimension of the first radial gap being getting at least wider in accordance with increasing a distance from the bearing portion in the rotation axis, and a second capillary seal portion adjoining the first capillary seal portion and having a second radial gap, a dimension of the second radial gap being getting at least wider in accordance with increasing a distance from the bearing portion in the rotation axis. The second capillary seal portion is expanded progressively in accordance with getting toward an outer side in an axial direction.
摘要:
The present invention has its main object in providing a bearing device of a motor superior in its resistance to impact and sliding performance. Therefore, according to the present invention, a shaft and a sleeve into which the shaft is inserted are formed from stainless steel, and a plating layer formed by means of an electroless nickel plating so as to have a phosphorous concentration of at least 6% and at most 12% and subjected to a precipitation hardening treatment in an atmosphere of at least 500° C. and at most 700° C. is provided on a surface of the shaft. Thereby, the sliding performance of the bearing device having a superior resistance to impact can be improved.
摘要:
A motor having a bracket with a stator coil for generating a magnetic field and a rotor hub with rotor magnets for receiving a rotation force from the magnetic field generated by the coil. Upper and lower dynamic pressure radial bearings are formed in between the sleeve and the rotary shaft. The lower end surface of the rotary shaft is formed with a spiral groove in which a lubricating fluid is filled to form a dynamic pressure thrust bearing. The spiral groove is formed by a circular hole at the center of the shaft, and a plurality of curved grooves each curving from the circular hole to the direction opposite to the rotation direction of the shaft and gradually increasing its width toward the outer circumference of the lower end surface of the shaft without reaching the circumference. The spiral groove functions to move the lubricating fluid outward in the radial direction from the center of the shaft, when the shaft rotates.
摘要:
A first metal housing member 111 is provided with a bottom plate part 1111 and a resin coating layer 1112 formed on a lower surface of the bottom plate part 1111. To a board mounted part 1113 which is a metal surface exposed part exposed from the resin coating layer 1112 around a housing through hole 113, an FPC 114 is mounted via an adhesive layer 115. A lead wire 1413 of a stator windings 1414 that is inserted in a board aperture 1144 is connected to the FPC 114 by a sealing material 117 as a solder and the board aperture 1144 is covered with the sealing material 117 to seal the housing through hole 113. A motor unit 10 can securely seal the housing through hole 113 by enhancing adhesiveness between the FPC 114 and the first metal housing member 111.