TFT SUBSTRATE AND MANUFACTURING METHOD THEREOF

    公开(公告)号:US20210098582A1

    公开(公告)日:2021-04-01

    申请号:US16097838

    申请日:2018-09-14

    Abstract: The present invention teaches a TFT substrate manufacturing method and a TFT substrate. The method configures contact region vias in the source/drain contact regions at two ends of the active layer, provides buffer layer troughs in the buffer layer beneath the contact region vias, and forms undercut structure between the buffer layer troughs and the active layer around the contact region vias, thereby separating the transparent conductive layer at the contact region vias, and extending the source/drain electrodes to contact the source/drain contact regions of the active layer from below through the buffer layer troughs. The present invention therefore prevents the occurrence of Schottky contact barrier resulted from the contact between poly-Si and ITO in the 7-mask process by letting the source/drain electrodes to directly contact and form ohmic contact with the source/drain contact regions of the active layer, thereby enhancing the electronic mobility of TFT devices.

    LTPS TFT substrate and manufacturing method thereof

    公开(公告)号:US10957713B2

    公开(公告)日:2021-03-23

    申请号:US16097277

    申请日:2018-09-13

    Abstract: The present invention teaches a LTPS TFT substrate and its manufacturing method. The manufacturing method, after forming vias using the photoresist layer on the ILD layer and the gate insulation layer above the source/drain contact regions, and before peeling the photoresist layer, forms conductive layers in the vias by depositing conductive material in the vias. The source/drain electrodes contact the conductive layers in the vias and therefore are conducted to the source/drain contact regions, thereby effectively resolving the problem of contact impedance being too high between the source/drain electrodes and the source/drain contact regions from the existing re-etch LDD technique. Then, through the re-etch LDD technique, the present invention is able to omit a mask process without sacrificing product characteristics. In addition, the vias and the photoresist layer have undercut structure, preventing the deposited conductive material from affecting the photoresist layer's peeling and guaranteeing the photoresist layer's peeling efficiency.

    MANUFACTURING METHOD FOR CMOS LTPS TFT SUBSTRATE

    公开(公告)号:US20210091124A1

    公开(公告)日:2021-03-25

    申请号:US16309446

    申请日:2018-09-18

    Abstract: The CMOS LTPS TFT substrate manufacturing method, by a semi-transparent mask, forms a second photoresist pattern having a second photoresist section above a second poly-Si active layer where P-type ion heavy doping is to be performed as protection. Then, N-type ions are effectively prevented from being implanted into the second poly-Si active layer's second source/drain contact region when conducting N-type ion heaving doping to the first poly-Si active layer. There is no need to compensate P-type ions during the subsequent P-type ion heavy doping to the second poly-Si active layer for forming the second source/drain contact region. The present invention therefore reduces the productivity loss in the P-type ion heaving doping process and, as N-type ion heaving doping does not affect the PMOS transistors, enhances the electrical convergence of the PMOS transistors. Damage to the film lattice structure by the ion implantation is also reduced, thereby increasing the device reliability.

    TFT substrate and manufacturing method thereof

    公开(公告)号:US10964790B1

    公开(公告)日:2021-03-30

    申请号:US16097838

    申请日:2018-09-14

    Abstract: The present invention teaches a TFT substrate manufacturing method and a TFT substrate. The method configures contact region vias in the source/drain contact regions at two ends of the active layer, provides buffer layer troughs in the buffer layer beneath the contact region vias, and forms undercut structure between the buffer layer troughs and the active layer around the contact region vias, thereby separating the transparent conductive layer at the contact region vias, and extending the source/drain electrodes to contact the source/drain contact regions of the active layer from below through the buffer layer troughs. The present invention therefore prevents the occurrence of Schottky contact barrier resulted from the contact between poly-Si and ITO in the 7-mask process by letting the source/drain electrodes to directly contact and form ohmic contact with the source/drain contact regions of the active layer, thereby enhancing the electronic mobility of TFT devices.

    Manufacturing method for CMOS LTPS TFT substrate

    公开(公告)号:US10957721B1

    公开(公告)日:2021-03-23

    申请号:US16309446

    申请日:2018-09-18

    Abstract: The CMOS LTPS TFT substrate manufacturing method, by a semi-transparent mask, forms a second photoresist pattern having a second photoresist section above a second poly-Si active layer where P-type ion heavy doping is to be performed as protection. Then, N-type ions are effectively prevented from being implanted into the second poly-Si active layer's second source/drain contact region when conducting N-type ion heaving doping to the first poly-Si active layer. There is no need to compensate P-type ions during the subsequent P-type ion heavy doping to the second poly-Si active layer for forming the second source/drain contact region. The present invention therefore reduces the productivity loss in the P-type ion heaving doping process and, as N-type ion heaving doping does not affect the PMOS transistors, enhances the electrical convergence of the PMOS transistors. Damage to the film lattice structure by the ion implantation is also reduced, thereby increasing the device reliability.

Patent Agency Ranking