Abstract:
Metal contact openings are etched in the barrier layer of a group III-N HEMT with a first gas combination that etches down into the barrier layer, and a second gas combination that etches further down into the barrier layer to a depth that lies above the top surface of a channel layer that touches and lies below the barrier layer.
Abstract:
Metal contact openings are etched in the barrier layer of a group III-N HEMT with a first gas combination that etches down into the barrier layer, and a second gas combination that etches further down into the barrier layer to a depth that lies above the top surface of a channel layer that touches and lies below the barrier layer.
Abstract:
An electronic device, that in various embodiments includes a first semiconductor layer comprising a first group III nitride. A second semiconductor layer is located directly on the first semiconductor layer and comprises a second different group III nitride. A cap layer comprising the first group III nitride is located directly on the second semiconductor layer. A dielectric layer is located over the cap layer and directly contacts the second semiconductor layer through an opening in the cap layer.
Abstract:
Metal contact openings are etched in the barrier layer of a group III-N HEMT with a first gas combination that etches down into the barrier layer, and a second gas combination that etches further down into the barrier layer to a depth that lies above the top surface of a channel layer that touches and lies below the barrier layer.
Abstract:
Metal contact openings are etched in the barrier layer of a group III-N HEMT with a first gas combination that etches down into the barrier layer, and a second gas combination that etches further down into the barrier layer to a depth that lies above the top surface of a channel layer that touches and lies below the barrier layer.
Abstract:
Metal contacts with low contact resistances are formed in a group III-N HEMT by forming metal contact openings in the barrier layer of the group III-N HEMT to have depths that correspond to low contact resistances. The metal contact openings are etched in the barrier layer with a first gas combination that etches down into the barrier layer, and a second gas combination that etches further down into the barrier layer.
Abstract:
Metal contact openings are etched in the barrier layer of a group III-N HEMT with a first gas combination that etches down into the barrier layer, and a second gas combination that etches further down into the barrier layer to a depth that lies above the top surface of a channel layer that touches and lies below the barrier layer.
Abstract:
Metal contact openings are etched in the barrier layer of a group III-N HEMT with a first gas combination that etches down into the barrier layer, and a second gas combination that etches further down into the barrier layer to a depth that lies above the top surface of a channel layer that touches and lies below the barrier layer.
Abstract:
A method of fabricating a semiconductor device includes providing a GaN substrate with an epitaxial layer formed thereover, the epitaxial layer forming a heterojunction with the GaN substrate, the heterojunction supporting a 2-dimensional electron gas (2DEG) channel in the GaN substrate. A composite surface passivation layer is formed over a top surface of the epitaxial layer, wherein the composite surface passivation layer comprises a first passivation layer portion formed proximate to a first region of the GaN device and a second passivation layer portion formed proximate to a second region of the GaN device. The first and second passivation layer portions are disposed laterally adjacent to each other over the epitaxial layer, wherein the first passivation layer portion is formed in a first process and the second passivation layer portion is formed in a second process.
Abstract:
Metal contact openings are etched in the barrier layer of a group III-N HEMT with a first gas combination that etches down into the barrier layer, and a second gas combination that etches further down into the barrier layer to a depth that lies above the top surface of a channel layer that touches and lies below the barrier layer.