Abstract:
A display device includes a driver circuit monolithically integrated in a display panel. The display panel has a plurality of pixel units and signal lines; and a driver circuit including a first circuit element and a second circuit element integrally formed on the display panel and electrically connected to each other, wherein patterning density of the first circuit element and patterning density of the second circuit element would be substantially different from each other if the first and second circuit elements were laid out as concentrated individual circuit elements, but where the driver layout includes at least two spaced apart first circuit element regions over which the first circuit element is distributively formed and the driver layout includes an interposed second circuit element region in which at least part of the second circuit element is formed.
Abstract:
A liquid crystal display includes: a first insulation substrate; a gate line disposed on the first insulation substrate; a first data line and a second data line disposed on the first insulation substrate; a color filter disposed on the first insulation substrate and disposed between the first data line and the second data line; a first light blocking member disposed on the first data line and the second data line; and a second light blocking member disposed on the color filter and the first light blocking member, extending in the same direction as the gate line, and overlapping the first light blocking member on the first data line and the second data line.
Abstract:
Embodiments relate to a liquid crystal display and a manufacturing method thereof, and more particularly, to a liquid crystal display including an alignment layer pattern and a manufacturing method thereof. The liquid crystal display includes a lower panel including a first alignment layer and a signal line. An upper panel faces the lower panel and uncovers an end portion of the signal line of the lower panel. A sealant is positioned between the lower panel and the upper panel and couples the lower panel and the upper panel with each other. The first alignment layer includes a coated region positioned between a first removed region overlapping the end portion of the signal line and a second removed region overlapping the sealant. The first alignment layer does not exist in the first removed region and the second removed region.
Abstract:
A liquid crystal display includes a first insulation substrate, a gate line, a data line configured to cross the gate line while being insulated therefrom, a thin film transistor connected to the gate line and the data line, a pixel electrode configured to include a first subpixel electrode connected to the thin film transistor and a second subpixel electrode, a second insulation substrate configured to face the first insulation substrate, a common electrode disposed on the second insulation substrate, and a liquid crystal layer disposed between the first insulation substrate and the second insulation substrate to include a plurality of liquid crystal molecules, where each of the first subpixel electrode and the second subpixel electrode includes a unit pixel electrode including a plurality of minute branches that is extended from a horizontal stem and a vertical stem.
Abstract:
The present disclosure relates to a display device, and the display device according to an exemplary embodiment includes: a substrate having a rounded edge; a light blocking member disposed around a display area of the substrate, wherein a corner of the light blocking member has a rounded edge; a plurality of pixels disposed on the substrate; and a pixel electrode disposed in each of the plurality of pixels, wherein the pixel electrode has a horizontal stem, a vertical stem, and a plurality of fine branches, wherein the plurality of pixels includes a first pixel at least partially overlapping the light blocking member and a second pixel adjacent to the first pixel and not overlapping the light blocking member, and wherein a shape of a fine branch disposed in the first pixel is different from a shape of a fine branch disposed in the second pixel.
Abstract:
A liquid crystal display panel includes a first substrate and a second substrate facing each other, a liquid crystal layer disposed between the first substrate and the second substrate, and color filters disposed on the first substrate, each color filters respectively configured to transmit light of one of first through fourth colors, in which at least one of the color filters includes at least one column protruding from the first substrate.
Abstract:
A curved display device according to an exemplary embodiment of the present system and method includes: a first insulation substrate; a gate line and a data line disposed on the first insulation substrate to cross each other; a thin film transistor coupled to the gate line and the data line; a pixel electrode disposed on the thin film transistor; a common electrode facing the pixel electrode; and a liquid crystal layer disposed between the pixel electrode and the common electrode and having liquid crystal molecules. The pixel electrode includes: a cross-shaped stem portion; minute branch portions extending from the cross-shaped stem portion; and minute slits disposed between the minute branch portions, wherein a width of the minute slit is greater than that of the minute branch portion.
Abstract:
A liquid crystal display includes: a first insulation substrate; a gate line disposed on the first insulation substrate; a first data line and a second data line disposed on the first insulation substrate; a color filter disposed on the first insulation substrate and disposed between the first data line and the second data line; a first light blocking member disposed on the first data line and the second data line; and a second light blocking member disposed on the color filter and the first light blocking member, extending in the same direction as the gate line, and overlapping the first light blocking member on the first data line and the second data line.
Abstract:
A liquid crystal display includes a first insulation substrate, a gate line, a data line configured to cross the gate line while being insulated therefrom, a thin film transistor connected to the gate line and the data line, a pixel electrode configured to include a first subpixel electrode connected to the thin film transistor and a second subpixel electrode, a second insulation substrate configured to face the first insulation substrate, a common electrode disposed on the second insulation substrate, and a liquid crystal layer disposed between the first insulation substrate and the second insulation substrate to include a plurality of liquid crystal molecules, where each of the first subpixel electrode and the second subpixel electrode includes a unit pixel electrode including a plurality of minute branches that is extended from a horizontal stem and a vertical stem.
Abstract:
A liquid crystal display device includes a first substrate; a first pixel electrode disposed on the first substrate and including a first body portion, a first sub-edge portion on a first side of the first body portion, and a second sub-edge portion, which on a second side of the first body portion; and a shield electrode on the same layer as the first pixel electrode a shield electrode on the same layer as the first pixel electrode and extending from a first side of the first sub-edge portion in a first direction. The first body portion includes a first stem portion, a second stem portion that intersects the first stem portion, and a plurality of branch portions extending from at least one of the first stem portion and the second stem portion. The first sub-edge portion is spaced apart from the branch portions and has a bent portion.