Abstract:
There is provided an organic light emitting display capable of increasing an aperture ratio. The organic light emitting display includes red pixels including red emission regions, green pixels including green emission regions, and blue pixels including blue emission regions. In at least one of the red emission regions, the green emission regions, and the blue emission regions, a distance between an emission region and an adjacent emission region above the emission region is different from a distance between the emission region and another adjacent emission region below the emission region.
Abstract:
A display device according to an embodiment of the present invention includes: a pixel including a first subpixel and a second subpixel; a first signal line connected to the first subpixel and transmitting a first signal; a second signal line connected to the second subpixel and transmitting a second signal; a third signal line intersecting the first and the second signal lines, connected to at least one of the first and the second subpixels, and transmitting a third signal; and a fourth signal line intersecting the first and the second signal lines and transmitting a fourth signal, wherein the first subpixel and the second subpixel are supplied with data voltages having different magnitude, and the data voltages applied to the first and the second subpixels are originated from a single image information.
Abstract:
Artifacts in a specific pattern due to a time difference in a VTDC driving scheme may be prevented. A display device includes: a display including a first pixel circuit, a second pixel circuit, and a pixel group having a first light emitting element, a second light emitting element, a third light emitting element and a fourth light emitting element arranged in a first direction; and a light emission driver generating a first sub-light-emission control signal for controlling emission of the first light emitting element and a second sub-light-emission control signal for controlling emission of the second light emitting element in a first subframe, and generating a third sub-light-emission control signal for controlling emission of the third light emitting element and a fourth sub-light-emission control signal for controlling emission of the fourth light emitting element in a second subframe.
Abstract:
Artifacts in a specific pattern due to a time difference in a VTDC driving scheme may be prevented. A display device includes: a display including a first pixel circuit, a second pixel circuit, and a pixel group having a first light emitting element, a second light emitting element, a third light emitting element and a fourth light emitting element arranged in a first direction; and a light emission driver generating a first sub-light-emission control signal for controlling emission of the first light emitting element and a second sub-light-emission control signal for controlling emission of the second light emitting element in a first subframe, and generating a third sub-light-emission control signal for controlling emission of the third light emitting element and a fourth sub-light-emission control signal for controlling emission of the fourth light emitting element in a second subframe.
Abstract:
There is provided an organic light emitting display capable of increasing an aperture ratio. The organic light emitting display includes red pixels including red emission regions, green pixels including green emission regions, and blue pixels including blue emission regions. In at least one of the red emission regions, the green emission regions, and the blue emission regions, a distance between an emission region and an adjacent emission region above the emission region is different from a distance between the emission region and another adjacent emission region below the emission region.