Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a substrate and an active pattern formed over the substrate and including first to fourth regions. A gate insulation layer is formed over the active pattern and the substrate, and a first gate electrode is formed over the gate insulation layer and partially overlapping the active pattern. The first gate electrode, the first region and the second region define a first transistor. A second gate electrode is formed on the same layer as the first gate electrode. The second gate electrode, the third region and the fourth region define a second transistor, and the second gate electrode, the second region and the fourth region define a third transistor. A first insulating interlayer is formed over the first gate electrode, the second gate electrode, and the gate insulation layer.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a substrate and an active pattern formed over the substrate and including first to fourth regions. A gate insulation layer is formed over the active pattern and the substrate, and a first gate electrode is formed over the gate insulation layer and partially overlapping the active pattern. The first gate electrode, the first region and the second region define a first transistor. A second gate electrode is formed on the same layer as the first gate electrode. The second gate electrode, the third region and the fourth region define a second transistor, and the second gate electrode, the second region and the fourth region define a third transistor. A first insulating interlayer is formed over the first gate electrode, the second gate electrode, and the gate insulation layer.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a substrate and an active pattern formed over the substrate and including first to fourth regions. A gate insulation layer is formed over the active pattern and the substrate, and a first gate electrode is formed over the gate insulation layer and partially overlapping the active pattern. The first gate electrode, the first region and the second region define a first transistor. A second gate electrode is formed on the same layer as the first gate electrode. The second gate electrode, the third region and the fourth region define a second transistor, and the second gate electrode, the second region and the fourth region define a third transistor. A first insulating interlayer is formed over the first gate electrode, the second gate electrode, and the gate insulation layer.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a substrate and an active pattern formed over the substrate and including first to fourth regions. A gate insulation layer is formed over the active pattern and the substrate, and a first gate electrode is formed over the gate insulation layer and partially overlapping the active pattern. The first gate electrode, the first region and the second region define a first transistor. A second gate electrode is formed on the same layer as the first gate electrode. The second gate electrode, the third region and the fourth region define a second transistor, and the second gate electrode, the second region and the fourth region define a third transistor. A first insulating interlayer is formed over the first gate electrode, the second gate electrode, and the gate insulation layer.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a substrate and an active pattern formed over the substrate and including first to fourth regions. A gate insulation layer is formed over the active pattern and the substrate, and a first gate electrode is formed over the gate insulation layer and partially overlapping the active pattern. The first gate electrode, the first region and the second region define a first transistor. A second gate electrode is formed on the same layer as the first gate electrode. The second gate electrode, the third region and the fourth region define a second transistor, and the second gate electrode, the second region and the fourth region define a third transistor. A first insulating interlayer is formed over the first gate electrode, the second gate electrode, and the gate insulation layer.
Abstract:
A pixel, a display device including a plurality of pixels, and a method of driving the display device. The display device includes: an emission pixel comprising an emission device, the emission pixel being in a display area; a dummy pixel in a non-display area outside the display area; and a repair line that is connectable to the emission device of the emission pixel and the dummy pixel, wherein the dummy pixel includes: a first dummy driver for receiving a same data signal as the data signal applied to the emission pixel for each of a plurality of subfields of one frame and controlling emission of the emission device of the emission pixel via the repair line; and a second dummy driver for resetting the repair line in one of the subfields in which the emission device does not emit light.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a substrate and an active pattern formed over the substrate and including first to fourth regions. A gate insulation layer is formed over the active pattern and the substrate, and a first gate electrode is formed over the gate insulation layer and partially overlapping the active pattern. The first gate electrode, the first region and the second region define a first transistor. A second gate electrode is formed on the same layer as the first gate electrode. The second gate electrode, the third region and the fourth region define a second transistor, and the second gate electrode, the second region and the fourth region define a third transistor. A first insulating interlayer is formed over the first gate electrode, the second gate electrode, and the gate insulation layer.
Abstract:
A pixel, a display device including a plurality of pixels, and a method of driving the display device. The display device includes: an emission pixel comprising an emission device, the emission pixel being in a display area; a dummy pixel in a non-display area outside the display area; and a repair line that is connectable to the emission device of the emission pixel and the dummy pixel, wherein the dummy pixel includes: a first dummy driver for receiving a same data signal as the data signal applied to the emission pixel for each of a plurality of subfields of one frame and controlling emission of the emission device of the emission pixel via the repair line; and a second dummy driver for resetting the repair line in one of the subfields in which the emission device does not emit light.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a substrate and an active pattern formed over the substrate and including first to fourth regions. A gate insulation layer is formed over the active pattern and the substrate, and a first gate electrode is formed over the gate insulation layer and partially overlapping the active pattern. The first gate electrode, the first region and the second region define a first transistor. A second gate electrode is formed on the same layer as the first gate electrode. The second gate electrode, the third region and the fourth region define a second transistor, and the second gate electrode, the second region and the fourth region define a third transistor. A first insulating interlayer is formed over the first gate electrode, the second gate electrode, and the gate insulation layer.