Abstract:
A display apparatus includes a display panel, a contrast analyzer, a contrast processor and a data driver. The display panel includes a plurality of sub display areas. The display panel is configured to display an image based on input image data. The contrast analyzer is configured to analyze the input image data in a time division method. The contrast processor is configured to adjust contrast of the input image data based on analysis result of the contrast analyzer. The data driver is configured to generate data voltages based on output data of the contrast processor. A number of contrast analysis cores of the contrast analyzer is determined according to a number of the sub display areas and a frame rate.
Abstract:
A display apparatus includes a display panel including a first pixel, a common voltage generator and a timing controller. The common voltage generator generates a reference common voltage, and provides the reference common voltage to the first pixel. The timing controller determines a dithering scheme for the first pixel based on first common voltage information, and generates first output pixel data by applying a dithering function to first input pixel data based on the dithering scheme for the first pixel. The first common voltage information indicates whether the reference common voltage is substantially equal to an optimal common voltage of the first pixel. A first data voltage provided to the first pixel is generated based on the first output pixel data. A polarity of the first data voltage is reversed with respect to the reference common voltage for each predetermined duration. A phase of the first data voltage is symmetric or asymmetric with respect to the reference common voltage depending on the dithering scheme for the first pixel.
Abstract:
A display apparatus includes a plurality of pixels arranged in rows and columns, each pixel column extends in a first direction and each pixel row extends in a second direction crossing the first direction, a first data line extending in the first direction and configured to transfer a data voltage to pixels included in at least two pixel columns, and for each pixel row, a first gate line extending in the second direction and disposed at a first side of the pixel row, and a second gate line extending in the second direction and disposed at a second side of the pixel row, the first and second sides of the pixel row are opposite to each other. In a pair of adjacent pixel columns, pixels, which are connected to the first gate line of their respective pixel row, are arranged in a zigzag arrangement in the first direction.
Abstract:
A display apparatus includes a timing controller configured to convert input image data into a hue, saturation, brightness (HSV) color space to generate a saturation histogram, generate a saturation gain curve and a dimming value based on the saturation histogram, control saturation of an input image based on the saturation gain curve to generate a data signal, and control luminance of the input image based on the dimming value to generate a light source control signal. A data driver is configured to generate data voltages based on the data signal. display panel is configured to display an output image based on the data voltages. A light source is configured to provide light to the display panel based on the light source control signal.
Abstract:
A display panel driving apparatus includes a data processing part. The data processing part calculates a first pretilt value of previous image data to output a first pretilt signal, calculates a second pretilt value of current image data to output a second pretilt signal, analyze a luminance distribution of unit pixels from image data to output luminance distribution analysis data, analyzes a color pixel to which a pretilt is applied based on the unit pixel from the image data to output color analysis data, outputs a determination signal indicating whether the pretilt is applied to the image data, according to the luminance distribution analysis data and the color analysis data, and outputs pretilt compensation image data according to the first pretilt signal, the second pretilt signal and the determination signal, as compensation image data.
Abstract:
A display apparatus includes a plurality of pixels arranged in rows and columns, each pixel column extends in a first direction and each pixel row extends in a second direction crossing the first direction, a first data line extending in the first direction and configured to transfer a data voltage to pixels included in at least two pixel columns, and for each pixel row, a first gate line extending in the second direction and disposed at a first side of the pixel row, and a second gate line extending in the second direction and disposed at a second side of the pixel row, the first and second sides of the pixel row are opposite to each other. In a pair of adjacent pixel columns, pixels, which are connected to the first gate line of their respective pixel row, are arranged in a zigzag arrangement in the first direction.
Abstract:
A display apparatus includes a plurality of pixels arranged in rows and columns, each pixel column extends in a first direction and each pixel row extends in a second direction crossing the first direction, a first data line extending in the first direction and configured to transfer a data voltage to pixels included in at least two pixel columns, and for each pixel row, a first gate line extending in the second direction and disposed at a first side of the pixel row, and a second gate line extending in the second direction and disposed at a second side of the pixel row, the first and second sides of the pixel row are opposite to each other. In a pair of adjacent pixel columns, pixels, which are connected to the first gate line of their respective pixel row, are arranged in a zigzag arrangement in the first direction.
Abstract:
A display apparatus includes: a display panel including a data line, a gate line crossing the data line, and a sub pixel connected to the data line and the gate line; a gamma data generator configured to output normal gamma data of a normal gamma curve corresponding to image data when a grayscale of the image data is inside a first grayscale range, and to output high gamma data of a high gamma curve or low gamma data of a low gamma curve based on a spatio-temporal pattern when the grayscale of the image data is outside the first grayscale range; and a data driver configured to convert the gamma data outputted from the gamma data generator to a data voltage and to output the data voltage to the data line.
Abstract:
A timing controller for a display apparatus includes a polarity comparison part and a compensation part. The polarity comparison part compares a first polarity of a first data voltage with a second polarity of a second data voltage, the first data voltage corresponding to a first pixel in a first frame and generated based on a first gamma voltage, the second data voltage corresponding to the first pixel in a second frame and generated based on a second gamma voltage. The compensation part compensates the second data voltage based on a first look-up table, if the first polarity is the same as the second polarity, and compensates the second data voltage based on a second look-up table, if the first polarity is different from the second polarity.
Abstract:
A display device includes a display panel including a plurality of sub-pixels, a grayscale conversion part configured to generate a data signal displaying different grayscales to the sub-pixels at a predetermined time interval, and a data driver configured to convert the data signal into a data voltage and to output the data voltage to the display panel.