Abstract:
A sensor substrate includes a base substrate, a black matrix pattern, a sensing electrode pattern, a driving electrode pattern, and at least one bridge line. The black matrix pattern is disposed on the base substrate and divides the base substrate into a light transmission area and a light blocking area. The sensing electrode pattern includes a plurality of first unit patterns arranged in association with a first direction. The driving electrode pattern includes a plurality of second unit patterns arranged in association with a second direction and disposed adjacent to the plurality of first unit patterns. The at least one bridge line is connected between at least two of the plurality of first unit patterns or between at least two of the plurality of second unit patterns.
Abstract:
A display panel and display device having the same are disclosed. In one aspect, the display panel includes a first substrate including a display region configured to display images and a non-display region surrounding the display region. The display panel further includes a metal pattern disposed in the non-display region, a second substrate opposing the first substrate, and a sealant disposed between and substantially sealing the first and second substrates, wherein the sealant at least partially overlaps the metal pattern. The metal pattern includes a body portion surrounding the display region and a plurality of protrusions extending from the body portion in a direction from the display region to the non-display region.
Abstract:
A sensor substrate includes a base substrate, a black matrix pattern, a sensing electrode pattern, a driving electrode pattern, and at least one bridge line. The black matrix pattern is disposed on the base substrate and divides the base substrate into a light transmission area and a light blocking area. The sensing electrode pattern includes a plurality of first unit patterns arranged in association with a first direction. The driving electrode pattern includes a plurality of second unit patterns arranged in association with a second direction and disposed adjacent to the plurality of first unit patterns. The at least one bridge line is connected between at least two of the plurality of first unit patterns or between at least two of the plurality of second unit patterns.
Abstract:
A sensor substrate includes a base substrate, a black matrix pattern, a sensing electrode pattern, a driving electrode pattern, and at least one bridge line. The black matrix pattern is disposed on the base substrate and divides the base substrate into a light transmission area and a light blocking area. The sensing electrode pattern includes a plurality of first unit patterns arranged in association with a first direction. The driving electrode pattern includes a plurality of second unit patterns arranged in association with a second direction and disposed adjacent to the plurality of first unit patterns. The at least one bridge line is connected between at least two of the plurality of first unit patterns or between at least two of the plurality of second unit patterns.
Abstract:
A sensor substrate includes a base substrate, a black matrix pattern, a sensing electrode pattern, a driving electrode pattern, and at least one bridge line. The black matrix pattern is disposed on the base substrate and divides the base substrate into a light transmission area and a light blocking area. The sensing electrode pattern includes a plurality of first unit patterns arranged in association with a first direction. The driving electrode pattern includes a plurality of second unit patterns arranged in association with a second direction and disposed adjacent to the plurality of first unit patterns. The at least one bridge line is connected between at least two of the plurality of first unit patterns or between at least two of the plurality of second unit patterns.
Abstract:
A display panel and display device having the same are disclosed. In one aspect, the display panel includes a first substrate including a display region configured to display images and a non-display region surrounding the display region. The display panel further includes a metal pattern disposed in the non-display region, a second substrate opposing the first substrate, and a sealant disposed between and substantially sealing the first and second substrates, wherein the sealant at least partially overlaps the metal pattern. The metal pattern includes a body portion surrounding the display region and a plurality of protrusions extending from the body portion in a direction from the display region to the non-display region.
Abstract:
A display panel and display device having the same are disclosed. In one aspect, the display panel includes a first substrate including a display region configured to display images and a non-display region surrounding the display region. The display panel further includes a metal pattern disposed in the non-display region, a second substrate opposing the first substrate, and a sealant disposed between and substantially sealing the first and second substrates, wherein the sealant at least partially overlaps the metal pattern. The metal pattern includes a body portion surrounding the display region and a plurality of protrusions extending from the body portion in a direction from the display region to the non-display region.
Abstract:
A spark-preventing element embedded in a printed circuit board includes a capacitive output electrode, a capacitive input electrode, an interlayer conductive member electrically connecting the capacitive output electrode to a signal line, and an interlayer insulation member electrically insulating the capacitive input electrode from the signal line, The capacitive input electrode is spaced apart from the capacitive output electrode with an air gap disposed between the capacitive output electrode and the capacitive input electrode, surrounds the capacitive output electrode, and is electrically connected to the ground layer. The spark-preventing element has an improved electrical characteristic and an increased durability.