Abstract:
An organic light emitting display device includes display pixels, auxiliary pixels, and a plurality of signal lines. The signal lines include data lines, auxiliary data lines, scan lines, and emission control lines. The auxiliary pixels are to be used for repairing defective ones of the display pixels. In operation, scan signals are supplied in a unit of p scan lines, A emission control signals are to be supplied in a unit of p A emission control lines, and B emission control signals are to be supplied in a unit of p B emission control lines, where p≧2.
Abstract:
A display panel including: a first substrate; a second substrate opposing the first substrate; a sealing substructure on the first substrate, the sealing substructure surrounding a display unit having a plurality of pixels, the sealing substructure including a metal mesh layer having a mesh shape; and a sealing member between the sealing substructure and the second substrate to seal between the first substrate and the second substrate.
Abstract:
An organic light-emitting apparatus includes a lower substrate comprising a display area and a peripheral area around the display area; a first insulating layer on the display area and the peripheral area of the lower substrate, wherein a plurality of penetration holes are formed in the first insulating layer in the peripheral area; an upper substrate on the lower substrate; and a sealant in the plurality of penetration holes bonding the lower substrate to the upper substrate.
Abstract:
A pixel repair circuit and organic light-emitting diode (OLED) display having the same are disclosed. In one aspect, the pixel repair circuit includes an emission controller configured to control the emission current and a repair line initialization unit configured to initialize the repair line. The pixel repair circuit further includes a current mirror unit configured to provide a mirror current of the emission current to the repair line initialization unit, wherein the current mirror unit is connected between a power supply voltage and the emission controller. The pixel repair circuit also includes a first emission switch configured to control an electrical connection between the emission controller and the current mirror unit based on an emission control signal and a second emission switch configured to control an electrical connection between the emission controller and the repair line based on the emission control signal.
Abstract:
A display panel including: a first substrate; a second substrate opposing the first substrate; a sealing substructure on the first substrate, the sealing substructure surrounding a display unit having a plurality of pixels, the sealing substructure including a metal mesh layer having a mesh shape; and a sealing member between the sealing substructure and the second substrate to seal between the first substrate and the second substrate.
Abstract:
A display apparatus includes: pixels at a display area; dummy pixels at a dummy area; and repair lines coupled to the dummy pixels and connectably arranged to the pixels, each of the dummy pixels including: a driving transistor configured to output a driving current corresponding to a data signal applied to a gate electrode thereof; an emission control transistor between a connection node of a corresponding repair line of the repair lines and the driving transistor, configured to be controlled by an emission control signal; a bypass transistor between the connection node and a first initialization voltage line through which a first initialization voltage is supplied, configured to be controlled by an initialization control signal; and a coupling removal transistor between the connection node and the first initialization voltage line, configured to be controlled by a coupling control signal applied at a different timing from the initialization control signal.
Abstract:
An organic light emitting display device including data lines, an auxiliary data line, and a compensation data line, a display area including display pixels connected to the data lines, a nondisplay area including auxiliary pixels connected to the auxiliary data line, and compensation pixels connected to the compensation data line, and auxiliary lines connected to the auxiliary pixels and the compensation pixels.
Abstract:
An organic light emitting display device, includes: pixels connected to scan lines, light emission lines, and data lines crossing the scan lines and the light emission lines, and including organic light emitting diodes, and pixel driving circuits to output a driving current to the organic light emitting diodes, respectively; a plurality of dummy driving circuits to output a dummy driving current; a dummy data line to apply a dummy data voltage to the plurality of dummy driving circuits; and a plurality of repair lines to electrically connect each of the organic light emitting diodes to at least one of the plurality of dummy driving circuits, wherein each of the dummy driving circuits corresponds to at least two of the repair lines, and each of the organic light emitting diodes is to be electrically connected to corresponding ones of the dummy driving circuits through corresponding ones of the repair lines.
Abstract:
An organic light emitting display device includes data lines and an auxiliary data line, scan lines and emission control lines crossing the data lines and the auxiliary data line, display pixels at crossing regions of the data lines, the scan lines and the emission control lines, auxiliary pixels at crossing regions of the auxiliary data line, the scan lines and the emission control lines, and auxiliary lines coupled to the auxiliary pixels. Each of the auxiliary pixels includes a discharge transistor coupled to one of the auxiliary lines and a first power voltage line to which a first power voltage is supplied and a discharge transistor controller including a plurality of transistors and configured to control the discharge transistor.
Abstract:
An organic light-emitting apparatus includes a lower substrate comprising a display area and a peripheral area around the display area; a first insulating layer on the display area and the peripheral area of the lower substrate, wherein a plurality of penetration holes are formed in the first insulating layer in the peripheral area; an upper substrate on the lower substrate; and a sealant in the plurality of penetration holes bonding the lower substrate to the upper substrate.